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ABSTRhCT

There existed a 2eed for an interactive program that

would provide the user assistanze in solving applications of

linear control the3ry. The Liaear Control Program (LIOCON)

and its user's guide satisfy this need. A series of ten

interactive programs ire presented which permit the user to

carry out analysis, Iesign aad simulatio. of a broad :lass

of linear control pr3blems.

LI.TCON consists of two groups: matrix manipulation,

transfer function aal tine response programs; and modern

controls programs. Examples fo each are forked within each

terminal session section.
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Ti ~ ~~- __________________

I. I _ DUCTIO_

The purpose of this thesis was to update an existing

program which provides assistance in solving computational

problems associated with the staly and application of linear

control theory. The Linear =Dntrols Program (LINCON) was

f.irst developed by Melsa [ 1] and adapted for batch use a-

NPS by Desjardins C 2]. Alth:'agh the original intent of

this thesis was simply to take Dzesjardins' adapted version

of Helsa's LINCON and further adapt it by making it

interactive, LINCON soon began to grow as other toutines

were incorporated, as will be n)ted, qntll its present form

was achieved.

LINCON, as suzh, is a higa level applications software

system made up of i large number of program tools for

interactive analysis, design ini simulatioa of a broad ziass

of linear control problems. With LINZON, users can

ccncentrate on th-i. specializ.d applications rather than

syste-m design and routine pr.gram devz!opnenrt, the-eby
saving valuable tiMe.

I: is assumed thit the readr is familzar w-th -he basic

concepts oDf linea: zontrol theory as may be obtained from

any one of a number of avilable textbooks (ses the
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bibliography). As such, the LINCON subprograms are

presented in a usec-3ciented fa3hion. First, their purpose

and some general rules that may apply are given; then the

input requirements ire present.l and the expected outputs

are described. Examples for ea:h are workal out including a

copy of the termin3l session and the final results.

1
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During LINCON's latest development, underlying

guidelines called for concepts which accounted for the needs

of the computer system, the programmer, and the user.

The guidelines followed luring this latest development

stage were:

(1) Operation of the system should be in an on-line

interactive mode such that data =an be easily input

to (or output from) the system and readily accessed

for verification, examination, and processing.

(2) Program development shouId be in a high-levsl

language in order to facilitate software

implementat-ina and promots machine independence.

(3) The software should be no-ala: in structur - so -hat

programs zaa be- modified or inserted without

affecting existing programs.

(U) Programs shoili be iavDked by means of logical

procedures or ccamands which m ze :era-on

tim_ and whizh are user-orentd so thaz pecple can

operate the s ystem wit-nout first becom -ng compater

ex p ert s.



A. INTERCTIVE OPERAUION

The applications of LINC3N are focused on interactive

processing. Experience has shown that interactive on-line

communication has many advantages in a research environment

because it offers the opportunity to make observations and

select alternate courses of action in a more flexible manner

thar with batch processing [ 3]. LINCON is organized around

a collection of inter-related :ommand programs, each of

which performs a spe=ified funzt-on and can be executed by

means of a simple keyboard initiation sequence.

B. HIGH LEVEL LAN3UA:E

An important feature in the design of LINCON is tha: it

was implemented i a high level laaguage. Program

development in assembly languag-- is mort time consuming and

results in system lependent software.

LI N0N is proqra mmed in AN3I standard FORTRAN and

follows the conver.ions of FORTRAN IV. FORTRAN has been

fcurd to be a usefal language fr several reasons:

(1) Since some form of FORRAN is available on most

computers, LINCCN is highly p:rtabi .a from on.l

computer to inother. A FORTRAN based systsm is

helpful for importing pcograms as well as e-Kpo3-in

12|



them. Of course, FORTRkN compilers don't all follow

the same standards 3o taere can still be

dif ficulties.

(2) FORTRAN is a simple eaagh language that relatively

complex programs can be implemented in a short

period of time. Nost scientific and research

personnel know F)RTRAN sufficiently well to write

their own programs if n-:essary.

(3) Algorithms cai be testa. and implemented in FORTRAN

and later convert.d to issembly language versions if

more speed ind affici-ncy are acessary. This

procedure has the farther benefit of aiding

portability such that even if parts have been

converted to assembler, equivalent FORTRAN vqrslons

are available.

C. MODULAR SOFTWARE

Overall system flexibilty is achieved by means of

modularity. LINCON is actually ade up of a large numb9: of

independent ccmmand programs. Each ccmmand program stands

or its own with h ability to takq sonm- form of iaout,

possibly supplied by some previous command, and generats

some form of output, possibly to be usai by a f-oliow-uv

ccmmanq.

13



D. USER-ORIENTED DPERATIDN

An important aspect in this modification of LINCON was

to make the commands user-orianted so that operating the

system does not raquire aa engineering or computer

backqround. This was achiavei with a standard terminal

keyboard by using phonetic chacacters which relate to the

function which the commani is to perform. A good

combination of brevitr and cla-ity is built into LINCON to

avoid having to push extra buttons on the keyboard while at

the same time preventing imbiguity.

INPUT RESTRICTIOSS AND LIMITATIONS

Although the inlt requirements are fully described in

the presentation of each progran, there are several input

format similaritieS ised by all of them. For ease of use,

and, more honestly, for ease of programming, most of the

data input is groupel in the sane arrangement.

The f rst irput :f every pr:gram is used to ilertify the

problem for :efer-zcz and for output iara. A maximum of

twenty alpha-numer:: charaztsrs can be used. This

restriction was not i system limitation but a programmer

decision.

.... J



The next input common to all programs is the dimension

of the plant matrix 3r & matrix. The f3rmat is I which

would normally restrict the user to a maximum matrix size of

9x9, however, due to, again, a programmer decision, a

dimension size not to exceed 8 is requested. The reasoning

behind this was due, in part, to the printer. The NPS

printer is capable 3E printing 133 characters on a line.

Since the output format to the printer is 8E16.6 this

naturally limits one to 8 numbers per line. Six places are

normally considered aecessary for good accuracy. A solution

that would have lead to an unlLiited matrix size would have

beer. to incorporate a "wrap around" routine within the

program. After attempting this i. was decided the rssults

were just too difficult to read.

Matrices are entered on- lement at a time begizning

with element 1,1 and zontinuing across the :ow. The next row

is then entered, ind the proc;ss conti.nues until all

elements have been entered. Aftr the matrix is entered, the

complete matrix is ajtomatically! brought t_- the screen for

review and possible correction. if a change to the 3at:-rx is

desire, the user si ly entec the row number and column

number without a separatLng zonma. For example, 35 would

15



indicate the element in row 3 anid column S. After being

prompted the zhanga3 Is entered. A review of the matrix is

again screened. The diser is igiin promp-t9 for any possi4ble

changes. This procelure contiaues until all changes have

been made.

Any special re;j1i:ements jr limitatiJous will be brought

to the user's atteti*o~n withi-n aach proqraus presertati~n.



III. U1211.4_Ol, I MMEON AND 1

A. INTRODUCTION

In this chapter four prograis are discussed which may be

used for the analysis and design of linear control systems

represented in state variible form as

;_(,t:) = ( I + bu(t (3. A-i)

u (t) = K'r(t) - k,(t ] (3. A-2)

y(t) = cT x(t) (3. A-3)

The first, BASIAT, is tae Basic Matrix manipulation

program which is ised for computing the determinant.,

inverse, characteristic polynonial, and gigenvalues fo: a

square matrix A. ra addition, BASMAT will calculate the

state transition mat:.ix and t~h- PHI (s) matrix. The second

program, PRFI-XP, caLculates thS partial fraction expansion

of a polynomial. Tha thi=1 pc:roam, ROOTS, calculates ths

rocts of a polyrnmi 11. The foarth prp;ram is usel for

determining the time response of linear =cntrol systems.

RTPESP will determins the rati-,al time response of a system

in closed-form prov=!ed that zhe input function -(t) has a

17



rational time respoase and that there be no repeated

eigenvalues in the coabination of the system and input. It

should be noted here, and will be again in the actual

discussion cf the program, that by setting r(t) and K equal

to zero, unforca 3.2d open-lDop systems may be studied,

re spectfull y.



B. BASIC MATRIX PROSRAM (BASMAr)

Given the plant matrix A, BASMAT can compute the

following:

(1) the determinant ol A, d.t A

(2) the inverse of A, A-'

(3) the charactecisti: polyaomial, det(sl-A)

(4) the eigenvalues of the zharacteristic polynomial,

(5) the state tri~sition zatrix, i(t) = exp(At)

(6) the PHI(s) mit rix, §(s1 = (sI-A)-

1. Terminal Seso E xampl

This section contains a terminal sessicn for a

specific problem. Commands Batered by the use: ae in

lower case. All of BASMAU's =apabilities will be utilze

beginning wi:h following plant natrix:

rl1.0 0.3 0.0'
a 0.0 -2.0 1.0

0.0 -0.5 1.0
L I

lincon

EXECUTION BGI.S...
LINCON CONSISTS OF rE{E FDLLOW:43 SUBPROGRAIS:

BASIC MATRIX MANIPULArION - <BAS.AT>
RATIONAL TIME RESPONSE - rRESP>
STATE VARIABLE FEEDBAZK - <3rVAR>
CONTROLLABILITY AD OBSERVASLITY - <OBSCON>
LUENBERGER OBSERVE'R - <LEN>
OPTIMAL ZONTROL/KALMAN FILTERS - <R!cAri>
DISCRETE TIME ALIAN FILTER - <KALMAN>
OPTIMAL CONTROL - <oPrcON>
PARTIAL FRACTIJN EXPANSION - <PRFEXP>
ROOTS OF A POLINDIIAL - <1,O.T5>

TO USE ONE OF THE SJBPRO3RAMS '"ER THE NME BETWEEN THE



BASMAT PROVIDES .ATRIX MANI.ULATION TO SOLVE
FOR DETERMINANTS, INVERSES STATE TRANSITION AND
PHIS) &ATRICES, EIGENVALUES, AND CHARACTERISTIC
POL NO MILS.

FIRST ENTER THE PROBLEM IDE.7IFICATION
(*NOT TO EXCEED 23 CHARACTERS* )

thesis example

NOW ENTER THE DIIENSI3N OF THE A MATRIX (UP TO 8).
3

THE ELEMENT A(1,1I =1.0

THE ELEMENT A(1,2 =
0.0

.0 T HE ELEMENT A(2,3) =

1.0THE ELEMENT k(2,1 =

0.0HE ELEMENT A(2,2 =

THE ELEMENT 1(2,31
1.0

THE ELEMENT A(3,1l =
0.0

o.;HE ELEMENT A(3,2) =

THE ELEMENT A(3,3i1.0

THE A MATRIX
1. COE+O0 0.)
0.0 -2.30E+00 1.)GE00
0.0 -5. )OE-01 1.)oE+00

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

DO YOU WANT TO CALCULATE fHE DETErmINANT?y

T-{E DETERMINANT )F THE MATRIX
-1 . 50E 00

ARE YOU SATISFIED WITH THE .ESULTS?
V

DO YOU WANT THE DETER.IINANr PRINTED?
V

DO YOU WANT TO CALCULATE 'HE ZNVEIRSE?

20



THE INVERSE OF PHE MATRIX

1.00+00 0.) 0.3
0.0 -6.57E-31 5.57E-01
0.0 -3.3 3E-01 1.33E+00

&EE YOU SATISFIED WITH THE RESULTS?

DO YOU WANT THE INVERSE PRINTED?
y

DO YOU WANT TO CALCULATE THE PHI(S) MATRIX?
y

THE MATRIX COEFFICIENTS JF THE NUMERArDR OF THE

PHI(S) MATRIX

THE MATRIX COEFFICIEIT OF 5**2

1. OOE+00 0. 3 0.)
0.0 1.301+00 0.)
0.0 0.3 1.30E+00

THE IATRIX COEFFICIENT OF S**I

1.:O0E+00 -0:OE0 3:3oEo0.0 -2. E0 I)E
0.3 -5.30E-01 1.30E+00

THE -MATRIX COEFFICIENT OF S**O

-1.,50E+00 1: 30:+30 -1:30E+00
0.0 5.3OE-01 -2.OOE+00

ARE YOU SATISFIED WITH THE RESULTS?
A NO RESPONSE WILL GIVE YU rHE OPTION O MAK3
CHANGES TO THE A ATRIX.

y
DO YOU WANT A PRI1TOUT OF riE RESULTS?

y
DO YOU WANT TO ChLCULATE THE CHARACTERISTIC POLYNOMIAL?

y

THE CHARACTERISrIC POLYN3MIAL-IN ASCENDING POWERS OF S

1. 50E+00 -2.50E+30 3.) 1.00E+00

ARE YOU SATISFIED WITH THE RESULTS?7

DO YOU WANT THE :iARAZTERISrIZ POLYNOMIAL PRINTED?
y

DO YOU WANT TO CALCULATE THE EIGENVALUES?

21



THE, IGENVALUES 3? TkE&MTIR4.AL PART IM&'. P A N I
8.23E-01 0.)

-1.82E 00 0.3
1. OOE+00 0.)

ARE YOU SATISFIED WITH THE RESULTS?
V

DO YOU WANT THE EIGENVALUES PRINTED?y

DO YOU WANT TO CALCULATE TRE STATE TRANSITION MATRIK?

THE ELEMENTS OF rHE STATE tRANSITION MATRIX

THE MATRIX COEFFICIENT OF EXP( 8.23E-01)T

0.0 0.3"8 E
0.0 -6 59E-32 3.3  01
0.0 -1.39E-01 1.37E+00

THE IIATRIX COEFFICIENT OF EXP( -1.82E4*00)7!

0.0 0
0. 0 1: 37E+0 0 -3 1 8E-01
0.0 1.39E-01 -6,59E-02

THE MATRIX COEFFICIENT OF ZXP( 1.OOE+30)T

o +0 -: 3 E-06 H6E-06
0.0 -5. 3 6E-07 1.7E-06

ARE YOU SATISFIED WITH THE RESTLTS?
A NO RESPONSE WILL GIVE "HE )PTION TO MAKE
CHANGES TO THE A IATRIX.

DO YOU WANT A ?RIITOU? OF rciE RESULTS?
Y

THIS CONCLUDES TiE BASIC lATRIX MANIPULATION PROGRAM
(BASMAT).

ANALYSIS IS COMPLETE. DO YOJ WANT TO RJN LINCON AGAIN?
n

LINCON IS NOW TERlINATED.

The zomputic results are shown in AppcendiK A.

Interpretation of the determinaat, inverse and eigenvalues

are straightforward. The PHI(st matrix is a combnati.on of

the numerator coeff'zients and characteristic polynomial.

The results can be interpreted is

22



z.1 s*+s-1.5 0.0 0.01
t (s) -- .0 S2-2.0s+1 s-1i-s2. s1 5 3.0 -0.5s+0.5 S2+3s~

an d, si ala rily, the- f ifth tarm of the state transit-ion

matrix is

23



C. PARTIAL FRACTION EXPANSION PROGRAM (PRFEXP)

PRFEXP can calculate a partial fraction expansion given

a rational ratio of two polynomials in the form

G(s) = K (3.C-1)0 (3)

there K = the input function gain,
a constant

N(sl = P, s + ns + . + s

ind D(s = 1, + di.S + d3 s + .- + S

The numerator and denominator :oefficients must be arranged

so that the coeffici.ents of s and st are each unity with

p > q 1_ 0. The outpats of the program are

(1) the numerator gain

(2) the numerator polynomial and its rocts; roots are

considered eqaal if thei- - real and imaginazy parts

do not differ by more tian 0.005.

(3) the denominator polynomin!L and it roots; mult inle

roots are listed once, mlzng with its multiplicity

(U) the numerato: cc-ffiiz-nts (-esi'ue matrix) a-

listed in the same order as t.he lanominamor -:ots

the first coe.ffi:ient ii any row of the mat-ix is

the first-orer -term -ozfficienr.



. z: 1_1ion jx_.p_ z

The partial fraction expansion of the following

rational polynoiaial is to be pecformed:

14(s2+2) (s+11G(s)=
2s* s 3 +2s+5

Putting the polynomil. in a usa3l _ form yialds

7 (s3+sZ+2s+21
G(s) =-

s'+3s 3+s 2.5

i con

EXECUTION BEGINS...
LINCON CONSISTS OF riE FOLLOWI.I SUBPROGRAMS:

BASIC MATRIX MANEPULArION - <BASMAT>
RATIONAL TIME R2ESPONSE - <RrRESP>
STATE VARIABLE FEEDBACK - <TVAR>
CONTROLLABILITY AND OBSERVA3ILITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL ZONTROL/KILMAN FILTZRS - <RICArI>
DISCRETE TIME KALMAN FILTER - <KALMAN>
OPTIMAL ZONTROL - <OPTCON>
PARTIAL FRACTION EXPANSION <PRFEXP>
ROOTS OF A POLYNOMIAL - <RODTS>

TO USE ONE OF THE SJBPROGRAMS ENTER THE NAME BETWEEN THE
SY1BOLS < >.
prfexp

PREXP IS USED TO DETERMINE THE PARTIAL
FRACTION EXPANSION OF THE RATIO OF TWO POLYNOMIALS.

FIRST ENTER THE PROBLEM IDENTIFICATION(*NOT TO EXCEED 23 CiARACtERS*).
thesis exarpie

ENTER THE !NPUT FJNCTION 3ALN--K.7.

T9E ~%t UNCTI3N GAIN

DO YOU WANT TO CHANGE THE VALUE OF THE 3AIN?n

:NTER THE NUMERATOR Bi POLY'13MIAL COEFFICIENT OR
FACTORED 2OT FORA. FIRST EITER ZITHER rHE LETTER P
FOR POLYNOMIAL CDEFFIZIENT F)R- OR THE LETTER F FOR
FACTORED ROOT FORI.

P



ENTER THE NUMERATDR POLYNOMIAL ORDER.
3

THE POLYNOMIAL CDEFFI:IENTS IUST BE ENTERED IN ASCENDING
ORDER OF S.

**WARNING--THE HI3HEST ORDER COEFFICIENT MUST BE UNITY.*
DO YOU NEED TO CiANGE THE IIPUT FUNCTION GAIN TO SATISFY
THIS REQUIREMENT?

n
ENTER THE POLYNOMIAL COEFFI:IENTS IN ASCENDING
ORDER OF S.

2. COEFF(1)z

2. COEFF(2)=

COEFF(3)=

COEFF(4)=

NUMEPATOR COEFFI:IENTS - Il ASCENDING POWERS OF S
2.00E+00 2.00E 00 1.OOE+00 1.00E+00

NUMERATOR ROOTS ARE
REAL PART IMA3. PART

0. 0 -1.41E+00
0. 0 1. 1E+00
-1. COE+O0 0.)

ENTER THE DENOMINATOR BY PDLYNOMIAL COEFFICIENT OR
FACTORED ROOT FORI. FIRST ElrER ETTHER THE LETTER P FOR
POLYNOMIAL COEFFICIENT FORM JR THE LETTER F FCO FACTORED
ROOT FORM.

P

ENTER THE DENOMINATOR POLYNDIIAL ORDER.
4

THE POLYNOMIAL COEFFIZIENTS MUST BE EATERED IN ASCFNDING
ORDER OF S.
**WARNING--THE HIHEST ORDER COEFFICIEN7 IUST BE JNITY.*
DO YOU NEED TO CHANGE THE INPUT FUNCTION GATIN TO SATISFY
THIS REQUIREMENT?

ENTER THE POLYNOMI AL COEFFIZIENTS IN ASCENDING
ORDER OF S.
COEFF(1)=

COEFF(2)=

COEFF(3)z

COEF? (4)=
3.

COEFF (5)=
1.
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DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S
2.50E+00 1.OOE+O0 0.0 3.OOE+00 1.00E+00

DENOMINATOR ROOTS ARE
REAL PART IMN3. P&RT MULTIPLICITY

-3.019E+00 0.3 1
-9.128E-01 0.0 1

4.658E-01-8.308E-)1 1
4.658E-01 8.308E-31 1

RESIUEMATRIX - REAL PART

3. 17E-01
4. 36E-01
4. 36E-01

RESIDU MA IX - IMA3. PARr
-2. OSE-
0.0
2. c6E+00

-2. 06E+00

THIS CONCLUDES THE PARTIAL FRACTION EXPANSION PROGRAM
(PRFEXP).

DO YOU WANT TO RJN THE PROGRAM AGAIN?
n

ANALYSIS IS COMPLETE. DO YOJ WANT TO RUN LINCON AGAIN?

LINCON IS NOW TERINArED.

The resuls are showa in Appaix B. Interpretaten of

Jhese results are:

s-5.81+jo s-0.32 3 -0.44-j2.06 s-0.u4+j2.06
G -s) ---- --- 4 + + +

s+3.02 s 9.13 0-..47+j7.83
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D. POLYNOMIAL ROOTS PROGRAM (R) )TS)

ROOTS can calculjite the roots of a polynomial of degree

less than or equal t3 eight. 3irea a pclymomial in the form

P (s) = p- + p's + P3SZ 3 ... + S (3. D-1)

the coefficient of s t  must be unity. The program output

lists the polynomial coefficients for reference and the real

and imaginary roots.

1. er ial Session Exam2la

The following polynomial is to be factored:

P(s) = -5s 3 + 15s 2 - 23.5. + 4

Putting the polynomial in the :rauired form yiells

p(S) = S 3 - 3s2 + 5.1s - 0.8

lircon

EXECUTION BEGINS...
L:NCON CONSISTS OF rHE FOLLOWIIG SUBPROGR,.MS:

BASIC 'MATRIX MANIPULATION - <5ASMAT>
RATIONAL TIME RESPONSE - <RrRESP>
STATE VARIABLE FEEDBA:K - <rVAR>
CONTROLLABILITY AND OBSERVABILITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALMAN FILlERS - <RICArI>
DISCRETE TIME KALIAN FILTER - <KALMAN>
OPTIMAL CONTROL - <OPrCON>
PARTIAL FRACTION EXPANSION - <PRFEXP>
ROOTS OF A POLYN3IIAL - <a:)rs>

TO USE ONE OF THE SJBPROSRAMS ENTER THE NANE BETWEEN THE
SYMBOLS < >.
-ccts
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J THEIR OND THE POLYNOMIAL OF
A

91'GE'fS'9H19 E~ AL T3 EGHT.A
FIRST ENTER THE PROBLEM IDEtIFICATION
(NOT TO EXCEED 23 CHARACTERS).

thesis example

ENTER THE ORDER 3F THE SYSJEM (UP TO 8).3

ROOTS OF A POLYNYI1AL
ENTER THE POLYNOIkAL COEFFIIIENTS IN ASCENDING
ORDER OF S.

**WARNING--THE HIHEST ORDER COEFFICIENT MUST BE UNITY.*

.8 COEFF(1)=

COEFF(2) =

COEFF(3) =

COEFF(LI)=

POLYNOMIAL COEFFICIENTS - IN ASCENDIN3 POWERS OF S
8. OOE-01 5.1OE 00 3.))E+00 1.03E+00

THE ROOTS ARE REAL PART INAG. PART
-1.41E400 1.62E+33
-1.41E+00 -1.62E 00
-1.74E-01 0.0

THIS CONCLUDES THE POLYNOMIAL ROOTS PR33RAN.

DO YOU WANT TO RIN THE PROGRAII AGAIN?
n

ANALYSIS IS COMPLETE. DO YO1 WANT TO RUN LINCON AGAIN?
r

LINCON IS NOW TERmINAtED.
The results shown i.: ApDerdl C arm- a-sily

n-erpreted.
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E. RATIONAL TIME RESPONSE PROGRAM (RTRESP)

The time response in clos.l form cf a linear control

system described by Egs. (3.A-1), (3.A-21 and (3.A-3) is

calculated by this program. The user must define the

initial conditions X()) and taie rational Laplace transform

of the scalar forzing f unct in r(t). The theoretical

concepts involved in the devel)pment of the computer zodes

are described by Melsi C 1].

1. Input Restriztions And Limitatiors

Enter the followin4 i2 F format (floating point?

1) the elements of the Dlant matrix A

2) the control ve.-tor b

3) the output vector

4) the feed bickback coefficent vertor k

5) the controller 4aia K

and

6) the initial conditions vector x(O)
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The rational Laplace transform of the input function

must be in the form

.. (r(t)] R (s) = G .... (3.E-1)D(.

where -= the input function gain,
a cons ant

N(s) a ,, + nLs + n.,sz + ... s

and D(s) % d, + dzs + dsZ + ... • s

The numerator and aenomirator roefficients must be arranged

so that the coefficients of si and sf are each unity with

p > q > 0. Due to programming limitations it is necessary

that the order of the system plus the dimension of D(s) be

less than or equal to ten.

Upon enterinq the input function gain, the user next

has the op-ion to enter the iumerator and denominator in

either polynomial coeaffi:ent f-rm cr fa:tored root form.

With the factored root focm antac the zeal part of the root

as negative if it lies in the left half plane and just the

maqnitude of the iaaginary part.

2. Tj-mina SCsion E xamR!

This section ccn-ias a nerninal session for a

specific example. Conmards ent-red by the user are in lower

case. The RTR:SP program will letermine the time response

form of the closed-ibop syste-
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r 1 . 0  0.0 0.01 r .01
1(t) = 0.0 -2.) 1.0 1(t) + 0.0 u(ti

0.0 -0.5 1.0 1.0
. j L J

u(t) = 3.2(r(t) - (1.0 1.0 0.0] _(t)I

y (t) = (1.0 0.4 1.0] 1(t)

if the Laplace transform of the input function is

S + 1.0
R(s) = 0.5

s2 - 2.0

and the initial conditions are zero.

Note here that the opes-loop rational time response

may be calculated by setting th= feedback coefficient vector

k equal to a zero vector. Also, if orly an in-:ia.

corndi:on response is dssired, the input function gain G is

set to zero.

lincon

EXECUTrON BEGINS.
LINCON CONSISTS OF rTE FOLLOWIN7 SUBPROGRAMS:

BASIC MATRIX MANIPULArION - <BASIAT>
RATIONAL TIME RESPONSE - <Rr3ESP>
STATE VARIABLE FEEDBACK - <3TVAR>
CONTROLLABILITY 1.1D OBSERVABILITY - <OBSCON>
LUZNBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALAN FILTERS - <RIC "I>
DISCRETE TIME KALAAN FILTER - <KALMAN>
OPTIMAL ZONTROL - <OPrCON>
PARTIAL FRACTTON 3XPANSION - <PRFEXP>
ROOTS OF A POLYNDIAL - <RO)TS>

TO USE ONE OF THE SJBPROGRAMS ENTER THE NAME BETWEEN THE
SYMBOLS < >.
;Zresp
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RTRESP DETERM INES THE TIME RESPONSE OF A LINEAR
FEEDBACK CONTROL SYSTEM. THIS PROGRAM WILL GIVE A
CLOSED-FORM EXPRE3SION FOR TiE TIME RESPONSE.

FIRST ENTER THE PROBLEM IDENTIFICATION
(NOT TO EXCEED 2D CHARACTERS).

thesis exaiple
ENTER THE ORDER OF THE SYSTEM (UP TO 8) .

3

ENTER THE ELEMENTS OF THE PLANT MATRIX--A.

A (1,1)
1.0

0. A (1,2)

A (1, 3)0.0

A (2, 1)
0.0

A (2, 2) =
-2.0

A (2,3) =
1.0

A (3, 1)3
0.0

-. (3, 2)

. (3, ) =

THE A MTARIX (PLANT IATRIX)

1.OOE+OG 0.) 3.i0-2.00OE+00 1.)0E 000: -5. 3 OE.-oI 1.3JE oo

DO YOU WANT TO C4ANGE ANY ELEMNT(S) OF THE AATR.IX?

ENTER THE ELEMENTS OF THE ::NTROL VECrOR--B.

0. 3(1)0.09(2)
3 (2) =

0.0

B (3)1.0

THE B MATRIX (CONTROL VEZT)P)

0.0
0.01. COE+00

DO YOU WANT TO CiANGE ANY ELEMENT(S) OF THE MIATRIX?
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ENTER THE ELEMENTS OF THE 39TPUT VECTOR--C.

1.0C() u

C (2) =0.14

1.0C(3) x

THE C MATRIX (OUTPUT VECTOR)

1 0OE+O0
4: COE- 01
1. OOE+O0

DO YOU WANT TO CHANGE ANY ELEMENT(S) OF THE MATRIX?
n

ENTER THE ELEMENTS OF THE FEEDBACK COEFFICIENT VECTOR --
FDBG.

FDBG (1)

1 0 FDBG(2)=

FDBG(3) 
=

THE FEEDBACK COEFFTCIENT VECTOR

I. OOE+00
1. COE+O0
0.0

DO YOU WANT TO CHANGE ANY ELEMENT(S) OF THE VECTOR?

ENTER THE CONTROLLER 7AIN--K.

THE CONTROLLER ;&IN

3. 20E+O0

DO YOU WANT TO CHANGE THE VALUE OF THE SAIN?

ENTER THE ELEMENTS OF THE INITIAL CONDITIONS VECTOR --
x(o).

XO (1)=
0.0

0 XO(2) =3.0

XO(3)=

INITIAL CONDITI:NS VECTOR-X(D)

0.0
0.0
0.0
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DO YOU WANT TO CHANGE ANY ELEMENT(S) OF THE VECTOR?

ENTER THE GAIN FOR THE RATIONAL LAPLACE
TRANSFORN OF THE INPUT FJNCrION.

0.5

THE INPgT FUNCrI)N GAIN =
5.OOE-01

DO YOU WANT TO CHANGE THE VALUE OF THE GAIN?n

ENTER THE NUMERATOR Bf POLYNOMIAL
COEFFICIENT OR FXZTORED ROOT FORM.
FIRST ENTER EITHER THE LETTER P FOR
POLYNOMIAL COEFFI:IENT FOR4 OR THE LETTER F FOR
FACTORED ROOT FORM.

ENTER THE NUMERArOR POLYNOMIAL ORDER.1

ENTER THE REAL PART OF THE ROOT.
-1.0

ENTER THE MAGNITJDE OF THE IMAGINARY ROOT.
0.0

NUMERATOR POLY NIAIAL OF R(SI-ASCENDIN3 POWERS OF S

1. OOE+ O0 1. OOE+O0

NUMERATOR ROOTS ARE
REAL PART IMA3. PART

-I. OOE 00 3.3

ENTER THE DENOMINATOR BY POLYNOMIAL
COEFFICIENT OR FAZTORED RO5r FORM.
FIRST ENTER EITHER THE L-TTER P FOR
POLYNOMIAL COEFFICIENT FORM OR THE LETTER F FOR
FACTORED ROOT FORM.P

ENTER THE DENOMINATOR POLYNDMIAL ORDER.
2

THE POLYNOMIAL C)EFFI:IENTS MUST BE
ENTERED IN ASCENDING ORDER OF S.

WARNING-THE HIGHEST ORDFR 9OEFFICI!Nr mUST BE UNITY.
DO YOU NEED TO CiANGE THE INPUT
FUNCTION GAIN TO SATISFY THTi REQUIREMENT?

rl

EN-ER THE POLYNOMI1AL COEFFIZIENTS I
ASCENDING ORDER OF S.
CO (1)

-2.3

CO (2) =0.0

CO f'3) =
1.0
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DENOMINATOR POLfNOMIAL OF R (S) - ASCENDING POWERS OF S

-2.OOE+00 0.) 1.00E+00

DENOMINATOR ROTS ARE
REAL PART IMA3o PART

1. 41E+O0 0.3
-1. 41E00 0.3

THE TIME RESPONSE OF THE STATE X(T)

THE VECTOR COEFFICIENT OF EXP(-5.OE-01)T*COS(l.2E+00)T

0.0 -3.70E-01 -9.72E-01

THE VECTOR COEFFICIENT OF EKP(-5.OE-01)T*SIN(I.2E+0O)T

0.0 -3.47E-01 -7.53E-02

THE VECTOR COEFFICIENT OF EXP( 1.OOE+O0)T

0.0 0.3 2.58E-06

THE VECTOR COEFFICIENT OF F, P( 1.41E+00)T

0.0 2.67E-01 9.122-01

THE VECTOR COEFFICIENT JF EXP( -1.41E+00)T

0.0 1.03E-31 5.33E-02

THE TIME RESPONSE OF THE OUTPUT Y(T)

THE COEFFICIENT OF EKP( -5.O3E-01)T*0S( 1.20E+00) T

-1. 12E+00

THE COEFFICIENT )F EIP( -5.O3E-01)T*SIN( 1.20E+00 T

-2. 14E-01

THE COEFFICIENT 3F EXP( 1.OOE+00)T

2. 68E-06

THE COEFFICIENT OF EXP( 1.41E+00)T

1. 02E+00

THE COEFF:CIENT )F EXP( -1.41E+00)T

1. 01E-01

THIS CONCLUDES THE RATIONAL TIME RESPONSE PEOGRAM
(RTRESP)

ANALYSIS IS COMnLETE. DO YOU WANT TO RUN LINCON A$AIN?

LINCON :S NOW TERIINArED.
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The computer results shown -n Appendix D are

interpreted as:

X (t) = 0.0

0:67eo lt.0. )-xp(-1.41t)

Y(tj = -11ep(o5~oj t-02ap- tsni2-
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IV. MOD co gQrRor OGRA IS

A. INTRODUCTION

In this chapter six programs are presented and discussed

which may be used f~r the analysis and design of control

systems.

The first, OBSC:N, is ,s-d to find the cbservability

index and controllability of a system. The next two programs

are used to design Kalman filters. RICArI and KALMAN can

find the feedback and control ;ains necessary to optimize a

function for either contrinuus or discr:ete syst ems,

respectively. The list three programs may be used to design

op-simal linear control systems. SVAR is paticular.y usiful

in the des ign of liiear sta!-e variable feedback :on:_.=

systems. It may Je used ta oalcula-s both open- and

clcsed-loop transfer functions and also his the ability to

desiqn a ciosei-lop system from desired tzansf-r fanzion

specifiCations. LUEN is uss! :o dsigr. a combined,

reduced-order, obs.? r ve r- con tro )r -to arhieve a I--s isd

clcsed-loop transfez fuz:ion fram a ys t..em wher soi orf

the states are inaczrsible. OP"CON will ninimize a giv.n

ccst function producing a scala: rontrol.
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B. OBSERVABILTIY INDEX AND Cn rROLLABILIry PROGRAM (OBSCON)

This program is used to letermine the observability

index and ccntrollability of the linear system

; (t) ( ~t) + I(t1('4. B- 1)

Y.(t) C_(t (U. B-2)

where

x = state vector (n-di.mnsional vector)

u = ccntrol veztor (i-dimsnsional vector)

y= output vector (m-dimensional vector)

A =n x n mazrix

B = a x 1 matrui

C =m x n matrix

The observabili y Iaex : defined as -he minimum

neqe such that th mat-ix

has rank n. The above systsm Ls said to be cortrclabl a:

a qiv-c initial tins if it i_ pcssibl, bv usin an
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unconstrained control vector, to force the system from an

initial state of 1(0) to some other state in a finite time

interval [ 4].

If the user desires just the observability index to be

calculated, enter the B matrix is a zero matrix. Likewise,

if just the controllibility of t e system is desired, enter

the C matr'x as a zeo matrix. The unobservable or

uncontrollable system response is then of rourse ignored.

1. Input Restrirtions

Other than the limitations t3 the problem

identification, (23 zharazters) and system size (8x8) there

are no restrictions to OBSCON. A reminder here may be

hepful, however. Remember to enter youZ elements of the

matrices in F format.

2. Terminal Ses-ion Examol-

This section contains a session for a sDi-ci

problem. Commands .!tered by -he 'iser ac. in lower oase.

The following system _s to be tested:

0.0 1.0 00' r2. 0  1.01
x(t) = -1.0 -0.5 1.0 x(t 4 0.0 1.0 a_(t)

0.0 0.0 1.0 0.3 0.3
i L J



t1

r 0.0 1.0 0.0
1(t) = 1.0 1.0 0.0 _(t)

-2.0 1.0 0.0a. 3

'incon

EXECUTION BEGINS.
LINCON CONSISTS OF rHE FOLLOWING SUBPROGRAMS:

BASIC MATRIX MANIPULATION - <BASMAT>
RATIONAL TIME RESPONSE - <RTRESP>
STATE VARIABLE FEEDBACK - <STVAR>
CONTROLLABILITY AIJD OBSERVABrLITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALMAN FILTERS - <RICArI>
DISCRETE TIME KALMAN FILTER - <KALMAN>
OPTIMAL CONTROL - <OPTCON>
PARTIAL FRACTION EXPANSION - <PRFEXP>
ROOTS OF A POLYN3MIAL - <RO3rS>

TO USE ONE OF THE SJBPROGRAMS ENTER THE NAME BETWEEN THE
SYMBOLS < >.
obscon

OBSCON DETERMINES THE OBSER7ABILITY INDEX AND
CONTROLLABILITY OF A SYSTEM.

FIRST ENTER THE PROBLEM IDENTIFICATION
(*NOT TO EXCEED 2) CHARACTERS*)

thesis exa uple

NOW, ENTER THE ORDER OF THE SYSTEM (UP rO 8).3

ENTER THE ELEMENTS OF THE PLANT 3ATRIX--A.
A (1,1)=

0.0

1 0 A(1,2) =

A (1,3) =0.0

A (2, 1) =
-1.0

5 (2,2) =
-0.5

A (2,3) =1.0

A (3,1)=0.0

0 A(3,2)=0.0

A (3,3) =
1.0
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THE A MATRIX 6PLA8T ATRIX)
0.0 1.00E 0

-1.OOE+00 -5.00E-01 1.OOE+03
0.0 0.0 1.OOE+00

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?n

ENTER THE NUMBER OF COLUMNS OF THE B MATRIX.
2

ENTER THE ELEMENTS OF THE B MATRIX.
B(1,1)=

B (1,2) =
1.0

B (2, 1) =0.0

B (2,2) =1.0

B (3, 1) =0.0

B (3,2) =0.0

THE B MArRIX

2.00E+00
0.0
0.0 0.0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?n

ENTER THE NUMBER JF OU2PUrS.
3

ENTE THE ELEMENrS OF THE C IATFIX.
.0,

C (1, 2) =1.0

C (1,3) =
0.0

C (2, 1) =

1.0 (2
C (2, 2) =

C (2, 3) =
0.0

C (3,1) =
--. 0

C (3, 2) =
I.c

C (3,31 =U.



THE C MATRIX

0.0 1. OOE+O0 0.0
1. OOE+00 1. OOE 00 0.0

-2. OOE+0O 1. OOE+00 0.0
DO YOU WANT TO CHANGE ANY ELEMENT OF rHE MATRIX?

n

OBSERVABILITY INDEX = 2

THE SYSTEM (AB) IS UNCONTR3LLABLE

DO YOU WANT TO RJN OBSCON A;AIN?
n

THIS CONCLUDES THE OBSERVABILITY INDEX/CONTROLLABILITY
PROGRAM (OBSCON)

ANALYSIS IS COMPLETE. DO YOI WANT TO RUN LINCON AGAIN?
n

LINCON IS NOW TERMINATED.

The complete results prasnted in Appendix E should

be self-explanatory t: the user.
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C. OPTIMAL CONTROL/KALMAN FILTER PROGRAM (RICATI)

The transient solution, mitrix gains, to the Riccati

differential equations f~r th? state-regulator controller

and the continuous Kalman filt-er are calculated by the

RICATI program.

Given a state-rgulator problem with the linear,tize-

irvariant system

A(t) = &x(t) + 34 (t) ('4. C-1)

I(t) = CX(t) (4.C-2)

the Riccati equation is definad as

P(t) = -P(t)A-_ P(t) (t)- ((t)4-Q(. C-3)

with P(t.) as th- bounlary czaiition. If u(t) -s not

constrained, a gain atrix c .n bs found such that tn-- cost

function
t4,

J= 1/2(_X' (t  )  (t 4 (_( 4, ]+ 1/ 2l _ (. _ (t) u (t) _u (-) ]dt(4. C-4)

is minimized [ 5]. Sach a gain ma-trix is ifined as

G (t) = R~P_(t) (4. :-5)

and

44



(t) a -9_ C Mt ,_ M (4. C-6)

The transient solution is solvel by the computer. Note that

the output from the :omputer for the gain matrix does not

include the negative sign of th-d feedback loop.

Given a continous Kalman filter proble with the linear,

time-invariant system

1(t) = __(t) + B(t) (L. C-8)

where w(t), the random process forcing input and v(t), the

measurement noise, hive covaria:e matrices of R, the random

input covariince matrix, and 2, the measurement noise

covariance matrix, respectfully, the Ri:cati equation is

defined as

R(t) = 1 P(t) (t)A_ qI(t) _ R-c( ) (4. C-9)

with

j(.= E f(t)- (-C.1 -T ]T F '.-

as the initial conlition ooundi:y. The ga-i matrix found is

defizned as

S-'(t) 1



This section contains a session for the specific

example presented by Helsa [ 1]. Commands entered by the

user are in lower case. Given th- second order linear system

r 1r •0
-1.0 0.0 1.0 0.0'j(t) = _x(t| , _t

0.5 0.0 D.) 1.0

r 1.3 0.01
1 (t) = x (t|0.0 2.0 X

L J

determine the optimal transient response zontrol and filter

gains for

r 1.0 1.31

1.0 1.3
L J

r 1.0 2.2

0.0 2.3
L I

Fcz the control option an initial time :f 0.0 and a final

time of 10. 0 is used. For the fi-sr option an nitial -:me

of 0.0 and a final tine of 5.0 is used. Also, for the _filt-r

op-ion, the initial :3ndition zatrix is chosen to be

46



r0.0 0.3,
0.0 0.3

L J

For both options ten equally soaced values of G and a on

the time interval t _ t 5 t ir. used, i.e., NPOINT is set

equal to 10.

lircon

EXECUTION BEGINS...
LINCON CONSISTS OF rHE FOLLOWINS SUBPROGRAMS:

BASIC MATRIX MANIPULATION - <BASMAT>
RATIONAL TIME RESPONSE - <RTRESP>
STATE VARIABLE FEEDBACK - <3TVAR>
CONTROLLABILITY hND OBSERVABILITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALMAN FILTERS - <RICArI>
DISCRETE TIME KALAAN FILTER - <KALMAN>
OPTIMAL CONTROL - <OPTCON>
PARTIAL FRACTIDN EXPANSION - <PRFEXP>
ROOTS OF A POLYN3)IAL - <RO3.TS>

TO USE ONE OF THE SUBPROGRAMS ENTER THE NAME BETWEEN THE
SYMBOLS < >.
r4cati

RICATI DETERMINES THE TRANSrENT SOLUTION FOR THE RICCATI
EQUATION. FIRST ENTER THE PRJBLEM IDENTIFICATION
(.NOT TO EXCEED 23 CHARACTERS*)

thesis exaiple

2 NOW, ENTER THE ORDER 3F THE SYSTEM (UP rO 8).

ENTER THE ELEMENTS OF THE PLANT MATRIX--A.

A (1,1)
-1.0

A (1,2)0.0

A (2, 1)0.0

A (2,2)=
-2.0

THE A MATRIX (PLANT IATRIXI
-1. OOE+ O0 0.0

0.0 -2. 00E+30

DO YOU WANT TO CHNNGE ANY ELEMENT OF THE MATRIX?
n

ENTER THE NUMBER OF CONTROL INPUTS.
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ENTER THE ELEMENTS OF THE D1STRIBUTION MATRIX--B.

B(1,1) =
1.0

B (1, 2)0.0

.0 B (2 ° ) -

B (2, 2)1.0

THE B MATRIX (DISTRIBUTI3N IATRIX)

1.OOE+00 0.0
0.0 1.00E+30

DO YOU WANT TO CiANGE ANY ELEMENT OF THE MATRIX?

ENTER THE NUMBER )F OBSERVA3LE OUTPUTS.
2

ENTER TRE ELEMENrS OF THE MEASUREMENT MlA1RIX--C.

1.0 1)

c (1,21 =0.0

C (2, 1) =0.0

C (2,2) =
2.0

T9E C MATRIX (MEASUREMENT IA1RIX)

1.OOE+00 0.3
0.0 2.0E+03

0O YOU WANT TO ZiNNGE ANY ELEMENT OF THE MATRIX?

YOU HAW! TWO OPTIONS AVAILABLE:
(1) THE CONTROL OPTION F)R SOLVING STATE-REGULATOR

PROBLEMS, :R
(2) THE FILr R OPTION F33 SOLVING A :ONTINUOUS KALMAN

FILTER PR:BLEM.
FOR Th! CONTROL OPTION, ENTTR THE LETTER C.
FOR THS FILTER OPTION, ENTER rHE LETTER F.

ENTER THE ELEMEN.S OF THE CONTROL WEI3HTING MAT?IX--R.

1.0 1)

0.0 R(Ir2

3.3

R (2, 2)2-0



THE R MATRIX (CONTROL WEI-oirING MATRIX)

1.OOE+00 0.0
0.0 2.OOE+00

DO YOU WANT 7u. CANGE ANY ELEMENT OF THE MATRIX?

ENTER THE ELEMENTS OF THE StrAE WEIGHTING MATRIX--Q.

10 (1,1) 31.0

1.0Q (1,2)=

1. (2, 1) =1.0

1 0 (2, 2)

THE Q MATRIX (STATE 4EIGHrrNG MATRIX)

1.OOE+00 1.00E+30
1.OOE+O0 1.OOE+00

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

ENTER THE INITIAL TIME FOR rHE TRANSIENT RESPONSE.0.0

ENTER THE FINAL rIME FOR THE TRANSIENT RESPONSE.
10.0

ENTER T4E NUMBER OF IDINTS )F THE TRANSIENT RESPONS!

10 TO BE PRINTED. 
(<1O)

*** CONTROL OPTI)H 3 *4

ENTER THE ELEMENTS OF THE TERMINAL BOUNDARY VALUE
MATRIX- -P.

P (1,1) =

0 .0 (1,2) =

0 (2, 1) =0.0

.0P (
2, 2 1

THE P MATRIX (TERMINAL BJUIDARY VALUE MATRIX)

0.3 0.0
0.3 0.0

D0 YOU WANT TO ZiANGE ANY ELEMENT OF THE MATRIX?fl



TRANSIEN? SOLUTI3N

TIME = 1.000E+01
GAINS

0.0 0.0
0.0 0.0

TIME = 9.0OE 03G AT 14S
3.75E-01 2.81E-01
1. 40E-0! 1.11E-31

TIME = 8.000E 03
GAINS

3.98E-01 2.85E-01
1.42E-01 1.12E-31

TIME = 7.OOOE.03
GAINS

4.00E-01 2.85E-01
1.42E-01 1.12E-D1

TIME = 6.OOOE+03
GAINS

4. OOZ-01 2.85E-01
1.'42--0t 1. 12E-3 1

TIME = 5. 000E+03
GAINS

'4.OOE-01 2.85E-01
1.42E-01 1.12E-)1

TIME = 4.OOOE+0)
GAINS

4.00E-01 2.85E-01
1.42E-01 1. 12E-3 1

TIME = 3.000E+03
GAINS

U. OOE-01 2.85E-01
1.42E-01 1. 12E-0 1

TIME = 2.OOOE+03GAINS
a.OOE-01 2.85E-01
1.42E-01 1. 12E-31

TIIE = 1.000E+O)
GAINS

I.DOE-01 2.85E-011. 4,23-01 1. 1 2E-0 1

TIME = 2.861E-06
GAINS

.OOE-01 2.85E-01
1.2 -01 1.12E-31
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DO YOU WANT THE FILTER OPrl)N?
y

WILL THERE BE CHA3GES TO THE A, B, OR Z MATRICES?n

WILL THERE BE CHANGES TO THE R OR Q MATRICES?

ENTER THE INITIAL TIME FOR THE TRANSIENT RESPONSE.
0.0

5.0 ENTER THE FINAL rIME FOR THE TRANSIENT RESPONSE.

ENTER THE NUMBER OF POINTS )F THE TRANSIENT RESPONSE TO
BE PRINTED. (<1031

10

FILTER OPTION **

ENTER THE ELEMENTS OF THE IlITIAL BOUNDARY VALUE
MATRIX--P.

P (1,1)
0.0

0.0 (1, 2) =

P (2, 1) =
0.0

0 . (2,2) =

THE P MATRIX (INITIAL BOJNDARY VALUE MATRIX)
0.0 0.0
0.0 0.0

DO YOU WANT TO CHANGE ANY ELZMENT OF r9e MATRIX?

TRANSIENT SOLUTION

TIME = 0.0
GAINS

0.0 0.0
0.0 0.0

TILE = 5.OOOE-01
GAINS

2.39E-01 2. OOE-O1
6.022-01 6.85E-01

TIME = 1.000E+0)
GAINS

2.71E:01 413E-318.51E-01 , 05E- 01

TIME = 1.500E 0)
GAINS

2.77E-01 2. 13E-01
8.53E-01 7. 36E-01
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TIME = 2.OOOE 00
GAINS

2.78E-o1 2.13E-31
8.53E-o1 7.06E-o1

TIME = 2.500E+03
GAINS

2.79E-01 2.13E-01
8.53E-01 7.06E-01

TIME = 3.OOOE+03
GAINS

2.79E-o1 .13E-31
8.53E-o1 .06E-01

TIME = 3.500E+03
GAINS

2.79E-01 2.13E-01
8.53E-01 7.06E-01

TIME = 4.000E+0
GAINS

2.79E-01 2.13E-3 1
8.53E-01 7.06E-01

TIME = 4.500E+00
GAINS

2.79E-01 2.13E-01
8.53E-01 7.06E-31

TIME = 5.000E 00
GAINS

2.79E-01 2.13E-01
8.53E-01 7. 06E-01

DO YOU WANT THE :ONTROL OPT[3N?

THIS CONCLUDES TqE RICCATI E UATION PR3$RAM (RICATI).

ANALYSIS IS COMPLETE. DO YDJ WANT TO RUN LINCON AGAIN?
r

LINCON IS NOW TER.INArED.

The computer .- suIts f.-D both opti:ns presentad "n

Appendix F indicates that a st ady stat: gain matrix has

beqn achieved.
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D. DISCRETE TIME KAL3AN FILTER (KALMAN)

The discrete Kalman filter gain matrix, G(k), is

calculated by this program. The theoretical concepts

involved in the devwelopment Df the computer codes are

described by Sage 1 5]. a brief deveiopment of the dis-rete

Kalman filter is ianluded here as an a-'d in the use of

KALMAN. Additional r:fernce maltrials can be found in the

bibliograph y.

Kalman filterina is m ethol of obtaining

min.aum-varjince estimates )f signals from noisy

measurements. The liscrete Kalmar filter provides state

estimates for the f:llowing system

1(k) = tj(k-1)-4Au(k-b *flv(k-1I (4&. D-1)

with the 1isc-ete l%iaar observations

where

x = the nxl stace v-atcr a: :hs time t(k)

t = the nxn zonsingular state t:ansition matrix

r = the nxr disturbaaze -ransition or 1istributior. m-:,_x
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4=the nxp control listributioa matrix

=the rxi disturbance of systam random input vector

£the axl aeasuraeat vector

=the nil aeasurement or observatnon vector

=the mil measurama-nt r.oise vector

g= the pxl control or test signal vector

k = the discrete-time inde3x (k =0,1,...)

The optimal fil-tered estriate of x(k), lenotsd

j(kjk), is given by the recursivs relations

j(k 1k-i) fi~(k-lik-11 + u(k-1, (4. D-3)

an d

A AX(k Ik) I(kik- 1) + 3 (k)rz(k) -(kj k-i)] (4. D -4)

for k =0, 1,. where x (0,O) 0. The Kilmaa gainr matrix,

g(k) , is an. nxm matrix which *-s specifiedA as

g(kik-I) j i(k-Ik-I1gj+2 (k,k-11 (4. D-7)

whets



=the nam ilentity satrix

Z(011 = (O), the init-ial condition matrix

1k-i) the. singla-stage praliction of K(k)

&(klk) = the filterel estimata 3f x(k)

2 =E'E(k)3!(k) T 1C , th x~ovrac matrix of the

ft the mmn covarianza matrix of the measurement noi.se

E{j!(k)v(k) r), the 3tan-square magntude of the perturbation
acceisrlt.-on matri X

This prograz :;omputS the recurrence Eqs.

(4. D- 5), (4~. D-6) an (4.D-7) L~ a specified numbs: of

4iterations IP and prin ts 3(k) a= a function of k.

The regui'red inputs are

1) the mransit ion mat.rix ~

2) the distributio-:n mat:;ix()

4) 'he observition matrix()

5) the rumbe: of poin,-ts I-o be perforsmed (11P)

an ki
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2. Te ag~j

This sectioa contains a session for a specific

problem. Commands eatered by the user are in lower zase.

The following system is to be tasted:

l.0 0.5 tO. 125

_(k) = 0(k-1) + w(k-1)
0.0 1.3 0.5

L. JI I. J

z(k) = (1.0 0.01 K(k) * !(k)

= (5.01

E[w(k) (k) } = 4.0

r 1 0 0 0 .0 3 1
_P(o) =

0) 0.0 1000.)

The number of time points -o b . :ompu+ed is chosen -c be 20.

irncon

EXECUTION BEGINS...
LINCON CONSISTS OF THE FOLLJWING SUBPROGRAMS:

BASIC MATRIX MA:NPULArION - <BASMAT>
RATIONAL ?-ME RESPONSE - <Rr.Esp>
STATE VARIABLE FEEDBAZK - <SJVAR>
CONTROLIABILITY LND OBSERVASLITY - <OBSCON>
LUENBERGER OBSERVER - <LtIEN>
OPTIMAL CONTROL/KALLAN FILTERS - <RICArI>
DISCRETE TIME KALIAN FILTER - <KALI'AN>
OPTIMAL CONTROL - <OPrCON>
PAPTIAL ?RACTION EXPANSION <PRFEXP>
ROOTS OF A POLYNY IAL - <RoQrS>

TO USE ONE OF THE 3JBPROGRAMS ENTER THE NAME BETWEEN THE
SYMBOLS < >.

ka.man

KALMAN DETEPI.ES THE DISCRETE KALMAN FILTER GAIN MATRIX
-- GK). FIRST ENTER THE PROBLEM IDENTIF:CATION
(.*NOT TO EXCEED 2) CHARACrE-3*).t.fsls exaiwfe

NOW, ENTER THE ORDER DF THE SYSTEM (UP TO 8).
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ENTER THE ELEMENrs OF THE TRANSITON MArRIX--PHI
PHI(1,1)u

PHI(1,2)=.5

0.oPHI (2,1)n

1. PHI(2,2)=

THE PHI MATRIX (rRANSITIDN NATRIX)

0:8 °  :8 08
DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

ENTER THE DIIENS13N OF THE RANDOM INPUT VECTOR.

ENTER THE ELEMENTS OF THE DISTRIBUTION MATRIX--GA. A.GAMMA( 1,l) =
.125

GAMMA (2,1) =
.5

THE GAMMA MATRIX (DISTRIB ]--ON MATRIX)

1

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

ENTER THE ELEMENrs OF THE IENN-SQUARE 1AGNITUDE OF THE
PERTURBATION A:C.ELERArION iArRIX--W.

W (1, 1) =

THE W MATRIX (MEAN-SQUARE AkGNITUDE DF THE

PERTURBATION tAELERAT ION MArRIX)

4. 00200

DO YOU WANT TO CikNGE ANY ELEMENT OF "HE 1ATRIX?

ENTER THE NUMBER )F OUTPUTS.

ENTER THE EL-MENTS OF THE OBSERVATION MATRIX--H.

H (1, 1=

H (1,2) =
0.

THE "d MATFX (OBSERVATION IAI'RIX)

1. OOE+ 00 0.0
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DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

ENTER THE ELEMENTS OF THE MEASUREMENT NDISE COV&RIANCE
MaTRIX- -R.
R (1, 11 =

5.

THE R MATRIX (MEASUREMENT NOISE COVARIANCE MATRIX)

5.O0E+O0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?
n

ENTER THE NUMBER 3F THE POINTS TO BE PERFORMED.
(<1 0 0)20

ENTER THE ELEMENTS OF THE INITIAL CONDITION MATRIX--P.

P(1,1) =
1000.

P (1,2) =
0.

P (2, 1) =

P (2, 2)1000.

THE P NATRIX (INITTAL CONDITION MATRIX)

1. OE 03 0.0
0.0 1.03E+03
DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

K 0
GAINS
9.95E-01 0.0

K = 1
GIINS
9.81E-o1 1.929+00

K = 2
GAINS

S. 29E-0 1 9.93E-01

K = 3
GAINS
7.03E-01 6.24E-01

GAINS
6.13E-01 4.52E-01
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554E-0 1 3. 72E-01

K m 6

5.183-01 3. 35E-01

K 7
GAINS
4. 99E-01 3.23E-01

Ks 8
GAINS
4. 90E-01 3.23E-01

K m 9
GAINS

4.87 E-01 3.23E-01

K = 10
GAINS
4. 86E- 0 1 3.21E-01

K 11
GAINS

14.86B-01 3.21E-01

K v 12
GAINS4. 86 E-0 1 3.213-01

K = 13
GAINS
.86E-0 1 3.218-01

K = 14
GAINS
4.86E-01 3.21E-01

K - 15
GAINS
4. 862-0 1 3. 21E-0 1

K - 16

GAINS
4.36E-01 3.21E-01

K = 17
GAINS
4.86E-01 3.21E-01

K = 18
GAINS

4.86?- 0 1 3.21E-0 1
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Ku 19
GAINS

'4.86E-0 1 3.21E-01

K= 20
GAINS4. 86E- 0 1 3. 21E-01

THIS CONCLUDES THE DISCRETE KALMAN FILTER PROGRAM
(K AL AN).

ANALYSIS 1S COMPLETE. DO 103 WANT TO RUN LINCON AGAIN?n
LINCON IS NOW tER!INAtED.

The computer results 1.--3 presp-ntel in Appendix 3.
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E. STATE VARI&BLE FEEDBACK PR33RAM (STVARI

Given the linear time-ir.variant system

j (t) = 1(ti + tu(ti (4. E-1)

F~~~ M~t - : () -Ms _t ]o(. E- 2)

y (ti (4. E.3)

the following can be performel by STVAR

(1) calculation of the plan: *zanfer function, Y(s)/JU(s)

(2) by defining , fictii)us c vector the internal

transfer function can b? calculated, Xt'(s)/U(s; for

example, if 1 3 (s)/U(s) is desirei the c matrix is

selected wita c 3 = I znl all other c elements squai

to zero; 3r if ., (sl /K3 (s) is l=sisred, calculate

X, (s)/U(s) ani X3 (s)/U(s) and divile the two

(3) calculatioa 3f the zliged-loop transfer function,

Y (s)/ (s)

(4) calculation :f the feedback transfer function,

(5) f~r a desir-2 cised-lD.p transfer function, the

controller gain and feedback coefficients in

ad Ition to HM. (s) Zan be :alcuiated; the



feedforwarl 3iin is sel.ected so that a zero steady

state erroc results fr.i a step input; the designer

who wishes other conitions must rescale the gain

and feedback coefficients appropriately; for

example, if it is desired to have K = 1.0 but it is

calculated as K = 2.0 with feedback coefficients of

k = 0.5, k = 0.0 and k 1.5, the procedure to

modify the results woull be

2. 0
k - [0.5 0.0 1.5]

1.0

- (I.3 0.0 3.0]

All of the info:atiorn necessary for the user to solve

state variable feedback problems is presented in this

section. However, ta.c theoretical concepts involved in the

development of the computer =:d-s are fully dsscribetd by

?lelsa C 71.

The basic input contains -he problem iden.tification,

matrices A and b and the order Df the plant, n. These four

inputs are required cegariless :_0 what open- or closed-loop

calculations are to be made.

At this point STVkR varrifies the cont.ollabliity of the

system. Three ccntrcabi:'v zditicns ar possible

(1) complete controllabili-y
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(2) numerically incontrollable

and

(3) uncntrollability

Contollability arises when the controllability matrix

E b LAb * 1-1.. b (4. E-4)

is nonsingular, i.a., letE 0 3. Even if the matrix is

nonsingular problems may arise if it is difficult to invert.

To check this STVUR multiplies the matrix by its calculated

inverse. The result should be the identity matrix. The

actual matrix product is compared with the identity iatrix

to provide a measure of ancontrollability. If the maximum

value of deviation is not negligible, the plant is

identified as numerialy uncontrollable, k de-viation largsr

than 10-3 to 10-s hia been foini to indicate d-ifficulty by

elsa 1].

user bware: ]- the syste.m is identified as being

uncontrollable, all Dpen- ani closed-loop calculations are

still performed!

There are three possible closed-loop options availAble,

ore for analysis purposes only ind the other two for Iasian

purposes. After choDsing the aaalysis option, and supplying

STVAR with the feedforward qain K and fedback coefficient
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matrix , the program cilculates the closed-loop

characteristic polyaomia. ial the numerator of the

equivalent feedback transfer function.

The two design options ire used to calculate the

controller gain and tae feedbark coefficients necessary for

a desired closed-loop chara:-teristic polynomial. The

polynomial may be entered in either polynomial form or

factored form.

This section ccntains a third order system for

analysis by STVkR as present.d by .ielsa 1 1]. The state

variable representation of the plant is given by

r-1.0 1.0 0.0 3.0
t) 0.0 0.3 1.0 x( + 0 _i(-)

0.0 -3.0 .0 1.0
L I L j

J(t) (1.0 1.0 0.01 L(tl

For the open-loop c-ass, it Is desired to find the

internai transfer fuznticn X (s3 /U (s) and the plant transfcer

function Y(s)/U(s). A fizticious matrix, necessary to find

the internal transfar function, is then

= (0.0 0.0 1.0]
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In addition, find the values of the feedforward gain and the

feedback coefficients requirel to give a closed-loop

transfer function f

Y(s) 2(s 2)
-"-=------------

R(s) s3+st2 +6s 4

lircon

EXECUTION BEGINS...
LINCON CONSISTS OF rHE FOLLOWIN3 SUBPROGRAMS:

BASIC MATRIX MANIPULArION - <BASMAT>
RATIONAL TIME RESPONSE - <RTRESP>
STATE VARIABLE FEEDBACK - <STVAR>
CONTROLLABILITY AND OBSERVABtLITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALMAN FILTERS - <RICAI>
DISCRETE TIME KALSAN FILTER - <KALMAN>
OPTIMAL CONTROL - <OPTCON>
PARTIAL FRACTION EXPANSION - <PRFEXP>
ROOTS OF A POLYN)MIAL - <RO3TS>

TO USE ONE OF THE SJBPROGRAMS ENTER THE NAME BETWEEN T9E
SYMBOLS < >.
stvar

STVAR DETERMINES INTERNAL TRANSFER FUNCTIONS,
THE PLANT TRANSFER FUNCTIJN THE CLOSED-LOOP TRANSFER
FUNCTION AND THE EQUIVALENd FEEDBACK TRANSFER FUNCTION.
IN ADDITION THE :ONTROLLER GAIN AND THE FEEDBACK
COEFFICIENTS NECESSARY TO AZHIEVE A SPECIFIED CLOSED-
LOOP TRANSFER FUNCTION ARE :ALCULATED.

FIRST ENTER THE PROBLEM IDE4TIFICATION
(*NOT TC EXCEED 23 CHARAcTERS*).

thesi-s exaiple

NOW, ENTER THE ORDER )F THE SYSTEM (UP rO 8).

ENTER THE ELEMENTS OF THE PLANT MATRIX--A
k0 (1,1)-1.

A (1,2)1.

A (1,3)
0

A (2, 1)=0

A (2,2) =0

A (2,3) =1.

A (3,1) =
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A (3, 2) =

0A (3,3) a

THE A garRiX (PLANTj~ATRIX t-1.OOE+ 0 1.00E+O 0.
0.0 0.3 1.OOE+00
0.0 -3.00E+O0 3.3

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

ENTER THE ELEMENTS OF THE CONTROL VECT3R--B.
B(2) =

0
0B(21

B (3)

THE B MATRIX (CONTROL MATRIX)
0.0
0.0
1. OOE+O0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

OPEN-LOOP CALCULATIONS

DENOMINATOP COEFFICIENTS,- EN ASCENDING POWERS OF S
3. OOE+00 3. 0OE 00 1.03E 00 1.0E+O0

THE ROOTS ARE REAL PART IA ART
0.3 1.73E 30

-1.OOE 0 0.0

DO YOU HAVE A FICTICIOUS OJrPUT VECTOR TO ENTE R?
7

ENTER THE ELEMENr OF THE FII:ICIOUS OUTPUT VECTOR--C.
C (1) =

C (2) =0

C(3)=1.

THE MATR:X (FIZTICIOUS OJrPUT VECTOR)
0.

3.0
1. OOE+00

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

NUMERATOR COEFFIZIENrS - I i ASCENDIN3 POWERS OF S

0.0 1. 0OE+00 1.)E+00
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THE ROOTS ARE REAL PART IMAG. PART
-I.00E#0D 0.0
0.0 0.0

DO YOU HAVE ANOTHER FICTIZIDUS MATRIX TO ENTER?

ENTER THE ELEMENTS OF THE TRUE OUTPUT 7ECTOR--C.
C (1) =1.

C(2)=

0C(3)=

THE C MATRIX (OUTPUT VECTOR)
1 . 0 +0
1. OOE+O0
0.0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

NUMERATOR COEFFRZIENSS - 11 ASCENDING POWERS OF S
2. OOE+00 1.OOE+ 0

THE ROOTS ARE REAL PART IMAG. PART
-2.03E00 0.0

THIS PROGRAM IS CAPABLE OF PERFORMING THREE TYPES
OF CLOSED-LOOP CALCULATIONS. ONE TYPE FOR THE ANALYSIS
MODE. THE OTHER riO FOR DESIGN.

ENTER ONE"OF THE FOLLDWIN3 IODES:
1) A -- FOR THE ANALYSIS MODE
2) P -- FOR THE DESIGN MODE WITH THE UNFACTORED

CLOSED-LOOP CHARkCTERISTIC POLYNOMIAL
3) F -- FOR T E DESIGN MIDE WITH THE FACTORED

CLOSED-LOOP CHARACTERISTIC POLYNOMIAL
p

CLOSED-LOOP CALCJLATIONS

KEY = P ***
ENTER THE DESIRED CLOSED-LODP CHARACTERISTIC POLYNOMIAL
COEFFICIENTS IN ASCENDING P3WERS OF S.
YOUR HIGHEST ORDER COEFFIZIE T MUST BE A VALUE OF ONE.

POLY(1)=

6. POLY(2)=

POLY (3) =

POLY (4) =

THE NUMERATOR OF H-EOUIVALENT -
I'l ASCENDING POWERS OF S

5. OOE-01 .50E+00 1.530E+00

THE ROOTS ARE REAL PART TMAG. PART
-5.00E-01 2.89E-01
5.03E-31 2.89-Jl
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THE FEEDBACK COEFFICIENTS

5. OOE-01 O.3 1.50E+O0

THE GAIN = 2.OOOOOOE+00

THE CLOSED-LO3P ZHARACTERISrIC POLYNOMIAL -
IN ASCENDING POWERS )F S

4.OOE+O0 6.OOE+O0 4.33E+00 1.OOE+00

THE ROOTS ARE RE %P& I . PART

-1.00E+00 -1.00E+30
-1.0OE+30 1.OOE+03

MAXIMUM NORMALIZED ERROR 0.0

DO YOU WANT TO RUN ANOTHER I!3DE IN STVAR?

THIS -ONZLUDES TRE STATE VARIABLE FEEDBACK PROGRAM
(STVAR).

ANALYSIS IS COMPLETE. DO YOU WANT TO RUN LINCON AGAT4?

LINCON IS NOW TERAINArED.

The computer rcesults f)r this problem is pressntel

in Appendix H. The cpen-loop portion indcates that the

system is controllable, since there is no indication of

unontrolla bility, with the desired internal t-ransfer

function of

(sL C3 +s2 43s+3

and a plant transfar function oE

Y (S) s+2

U (S) s34s 2+3s+3

The closed-ibop porticn, using the polyncmial design

mode, shows -h:z the faedEorward aaia and _e-i back
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coefficient matrix replired to yield the lasired closed-loop

transfer function, Y(s)/R(s), ace

Ku 2.0

anda

r0.5
kc 0.0

1.5
A



F. LUENBERGER OBSERVER PROGRAM (LUEN)

When a partioular : losed-loop transfer function is

desired and some of the states ire inaccessible, LUEN =in be

used to design a Lueaberger 3bserver. For example, if q

measurements are state variables, an observer of reduced

dimensions can be designed to estimate only those states

which are not measured. rhe state estimates generated by an

observer can be used as input information to a

controller C 8]. The block diigram presented in Fig. 4-1

represents the general form of tae system when a compensator

is placed in the feedback path.

r(t) controller t)lant x(t) measurement

observer z(t)

Fig. 4.1. Lanberger Observer Block Diagram
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The plant is chacrcterized 3y the state and measurement

equations

(_t : t) + (t(. -I

z(t) ,x it) (4. F-2)

z(t) = _ x(ti (4. F-3)

An observer can be designed that generates an estimate z

which converges to tte state x as time becomes large [ 9].

A linear controller is designed as

_(t) = KLt) - (t) (4. F-4)

in which all states can be measured. Replaci.g the true

state with the estimate yields

31(t) K[r(t) - K 1(t) ] (L..F-5)

where

klx(t) : hY (" + 9zlt, (4. F-6)

As tiae increases _k (t) will approach kT (t).

:educed-order observar sstimlt-s only the inaccesible

Stales, the control law cont.*ns measured states where

available arId obsev.-ver estimar-e fgr the other states.
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For ease in using LUEI, the following are defined:

I M) = n-elemant column state vectoc

1(t) U plant iaput

I(t) = q-vector of systen measurements

z' (t) = output variible t3 be controlled

A = plant atrix (n x n)

b = ~distributioa matri-i (q x m)

[assampt ions: (1) S n and (2) has rank q]

C = output matrix

r~t = forcing funztiori

K =-10feedfociard or --catrollr gain

k = feedbazk coaffiziant matrix(n x m)

h = observac feedback coefficient ma::i--x

q = output ffeedoack ciffcen atzix

an, d

x() = estimatel state veztor- of x(t6i
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From theory, the observer is de3cribed by

X(t) = [i(t) + ia(t) + (4.F-7)

where

= observer eigenvalu3 matrix

and

_ and = observ-r gain matrices.

Z' (s)/R (s) can be solved by the following procedure:

(1) select Z' (s)/R (s) and slve for K and k by using the

STVAR program

(2) use the OB3CON pro ram to calculate the

observability index; the observ-r is designel to

have a dimea sicn gciater than or equal to the

observability index minas one.

(3) select the _ eigenvalus; these should not egual

those of A, ?reviously zalculated by STVAR.

(4) use LUEN to z3lculat- G, , h_ and -

1. Te__minll Session Examnl-

The example 3rese-.v-ed h r _ is taker from Desjariins,

pp. 147 C 21. Comaa.ls -nterei by the user are in lower
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case. However, due to the special nature of the exaiple,

comments have been added io the terminal session for

clarity. Given the fourth orlec plant

3.0 1.0 0.0 0.0 0.0
0.0 3.0 1.3 0.0 0.0
1. 0 3.0 0.0 1.0 0.0

3.0 -15. -23. -9.0 1.0

v'th

z'(t) = (10. 20. 0.0 0.0] l(t)

Because x, and xA ar the only zeasureable states

r 1 . 0 0.0 3.3 0.01
1 (t) = x_ (t)

3.0 1.0 2.0 0.0
L J

The closed-loop transfer funz:ion to be achieved is zhoser,

to be

Z'-(s- 1 - -

R(s) s4+s 3+17s 2 +29s+20

lincon

EXECUTION BEGINS...
LINCON CONSISTS OF rHfe FDLL3WI'l4 SUBPROGRAMS:

BASIC MATRIX MANrPULArION - <BASNAT>
RATIONAL TIME RESPONSE - <RrRESP>
STATE VARIABLE FEEDBA:.K - <SVAR>
CONTROLLABILITY kD OBSERVABILITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KhLMAN FILTERS - <RICArI>
DISCRETE TIME KALhAN FILTER - <KALMAN>
OPTIMAL CONTROL - <oPrcoN>
PARTIAL FRACTIDN EXPANSION - <PRFEXP>
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ROOTS QF A POLYNOMIAL - <RODS>
TO USE ONE OF THE SUB ROG RAMS EN TER THE NAME BETWEEN THE
SYMBOLS < >.
stvar

STVAR DETERMINES INTERNAL TRANSFER FUNCTIONS,
THE PLANT TRANSFER FUNCTION T E CLOSED-LOOP TRANSFER
FUNCTION AND THE EQUIVALENt FEEDBACK rRANSFER FUNCTION.
IN ADDITION THE CGITROLLER GAIN AND THE FEEDBACK
COEFFICIENTS NECESSARY TO AkSIEVE A SPECIFIED CLOSED-
LOOP TRANSFER FUNCTION ARE ZALCULATED.

FIRST ENTER TEE PROBLEM IDENTIFICATION
(*NOT TO EXCEED 23 CHARACTERS*).

THESIS EXAMPLE

NOW, ENTER THE ORDER 3F THE SYSTEM (UP TO 8) .

ENTER THE ELEMENTS OF THE PLANT MATRIX--A

A (1, 11)s

A (1, 2)

A (1, 3)
0

A. (1,4) =
A (1, 41

0

A (2, 1)
0

A (2, 22
0

A (2, 3) =

A (2, 4)=

0 A (3, 1) =
• 0

0 A (3, 2)

0 A (3, 3)
• 0

. (3, 4)

0 A (4, 1)0

A (4, 21-15.

A (4, 3) =
-23.

A (L, 4)
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THE A MATRIX (PLANT MATRIXI

8:8 ': 30E+00 8:8
0.0 0. 0.3 1.OOE+O0
0.0 -1.50E+01 -2.30E+01 -9.00E+00

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?
n

ENTER THE ELEMENTS OF THE C3NTROL VECT3R--B.
1~ B(1)=

0

0 B(2) =

B (3) =0

B(4) =1.

THE B MATRIX (CONTROL MATRIX)

0.0
1. OOE + 00

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

OPEN-LOOP CALZULkTIONS

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

0.0 1.50E+01 2.30E+01 9.00E+00 1.OOE+30

THE ROOTS ARE REAL PART IMAG. PP.RT
-3.OOE0O 0.0
-5.COE430 0.0
-1.00E-33 0.0
0.0 0.0

DO YOU HAVE A FI:TICIOUS OUTPUT VECTOR TO ENTER?

n

ENTER THE ELEMENTS OF THE TRUE OUTPUT VECTOR--C.

C (1)I
23.

C(2)=
10.

C(3)=

C (i) =

THE Z MATRIX (OUTPUT nEczPRm
2. OOE 01
1. OOE+01
3.0
0.0
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DO YOU WANT TO CHANGE ANY ELEMENT OF rHE MATRIX?

NUMERATOR COEFFI.IENrS - I9 ASCENDING POWERS OF S

2. OOE+01 1.OOE+01

THE ROOTS ARE REAL P&RT IMAG. PART
-2.00EtO0 0.0

THIS PROGRAM IS ZAPABLE OF PERFORMING THREE TYPES
OF CLOSED-LOOP CALCULATIONS. ONE TYPE FOR THE ANALYSIS
MODE. THE OTHER rwO FOR DESIGN.

ENTER ONE OF THE FOLLOWING ADDES:
1 A -- FOR THE ANALYSIS ,ODE
2 P -FOR THE DESIGN MDDE WITH THE UNFACTORED

CLOSED-LOOP CHARACTERISTIC POLYNOMIAL
3) F -- FOR TiE DESIGN M)DE WITH THE FACTORED

CLOSE~D-LOOP CHARACTERISTIC POLYNOMIALp

CLOSED-LOOP CALZ:JLATIONS

KEY = P *****
ENTER THE DESIRED CLOSED-LOOP CHARACTERISTIC POLYNOMIAL
COEFFICIENTS IN ASCENDING POWERS OF S.

YOUR HIGHEST ORDER COEFFIZIEIT MUST BE A VALUE OF ONE.
POLY(1) =

2POLY (2) =

7 POLY (3) =

POLY (4) =6.

POLY(5)=1.
THE NUMERATOR OF H-E2UIVALENT -

IN ASCENDING PORERS 3F S

2.OOE+01 1.30E+01 -5.)OE+00 -3.03E+00

THE ROOTS ARE REAL PART IMAG. PART
-1.04E+00 0.0
3.21E+00 0.0

THE FEEDBACK COEFFICIENTS

2. OOE+01 1.30E+01 -6.0E+00 -3.OOE+0O

THE GAIN = 1.000000E+00

THE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL -
IN ASCENDING POWERS OF S

2.OOE 01 2.3 0E+01 1.732+01 6.OOE+00 1.OOE+00
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THE ROOTS ARE -f!.0OE*3 18E
-1.OE+O0 2.OOE+0O
-2.00E+30 0.0
-2.OOE+00 0.0

MAXIMUM NORMALIZED ERROR = 0.0

DO YOU WANT TO RUN ANOTHER 13DE IN STVAR?n

THIS CONCLUDES THE STATE VARIABLE FEEDBACK PROGRAM
(STVAR).

C2MENT : results indicate that the system is
Uo-- roliable, that thz iqenvalues of A are -3.0,
-5.0, -1.3 and 0.0, that the va.aes of-k are 20.0,
13.0, -6.0 iad -3.0 aid that K 13 equal to unity;
the observibility ind-ax is next needed to design t&e
observer

ANALYSIS IS COMPLETE. DO Y03 WANT TO RUN LINCON AGAIN?
y
LINCON CONSISTS OF tHE FOLLDWI3 SUBPROGRA[S:

BASIC MATRIX MANtPULArION - <BASMAT>
RATIONAL TIME RESPONSE - <RrRESP>
STATE VARIABLE FEEDBAZK - <3rVAR>
CONTROLLABILITY AD OBSERVABILITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALMAN FILTERS - <RICArI>
DISCRETE TIME KALIAN FILTER - <KALSAN>
OPTIMAL CONTROL - <OPTCON>
PARTIAL FRACTION EXPANSION - <PRFEXP>
ROOTS OF A POLYNOMIAL - <ROOTS>

TO USE ONE OF THE SUBPROGRAMS ENTER THE NAME BETWEEN THE
SYMBOLS < >.
obscon

OBSCON DETERMINES THE OBSERVABILITY INDEX AND
CONTROLLABILITY 3F A SYSTEM.

FIRST ENTER THE ROBLEM IDEqIIFICATION(*NOT TO EXCEED 35 CH&RA ERS*).
thesis example

NOW, ENTER THE ORDER OF THE SYSTEM (UP rO 8).

ENTER THE ELEMENTS OF THE PLANT MATRIX--A.

A (1,11 =0

1. A (1,2)

0 A (1,3)

A (1, 4)0

A (2, 1) =
0
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A (2, 2)0

A (2, 3)1.

A (3, 1) =
0

A (3, 3)

0

A (3,2) =

A (4,1 =

0

A (4,2) 2

-1.

A (4,3) =A (4, 4)=
-23.

-9.

THE A MATRIX (PLANT IATRIX)

0.0 0.0 3.0 1.OOE 00
0.0 -1.50E+01 -2.30E+01 -9.OOE+00

DO YOU WANT TO CHANGE ANY ELEMENT OF riHE MATRIX?

ENTER THE NUMBER OF COLUMNS OF THE B MATRIX.

ENTER TE ELEMENrS OF THE B 3ATRIX.
3(1, 1) =

B (2, 1) =0

B (3, 1) =0
3 (4, 1) =

1.

THE a AT RIX

0.0
0.0
0.3
1.00E+00

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?
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ENTER THE NUMBER 3F OUTPUTS.
2

ENTER THE ELEMENrs OF THE C MATRIX.
1 C (1, 1) =

C (1, 2)0

C (1, 3)0

C (1, 4)=

0

C (2, 1)0

C (2, 2) =1.

C (2, 3)0

0 C (2, 4)

THE C MATRIX
1.OOE+O0 0.0 3.0 3.0
0.0 1.OOE+O0 0.0 3.0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?
n

OBSERVABILITY INDEX 3

THE SYSTEMABL IS :ONTROLLABLE

DC YOU WANT TO RIN OBSCON AAIN?
n

THIS CONCLUDES THE OBSERVABILITY INDEX AND
CONTROLLABILITY PROGRAM (OBS33N)

COMMENT; resl;s -.ndi e 1= n obsfrvabil "t nS of----T:S p-nuzmS the iesi qr of c~nd :'eIs orderst
observer; 9eienva!ues :f -3.5 and -4.0 are chosen
(1o- egual t those Df the plait) as observer
e:genva ues

ANALYSIS 1S COMPLETE. DO YOJ WANT TO RUN LINCON AGAIN?
y

LINCON CONSISTS OF nHE F0LLOWI13 SUBPROGRAMS:
BASIC MATRIX MANrPULArION - <BASIAT>
RATIONAL TIME RESPONSE - <RrqESP>
STARE VARIABLE FEEDBACK - <3SVAR>
CONTROLIABILITY 41D OBSERVABILITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALMAN FILTERS - <RICArI>
DISCRETE TIME KALIAN FILTER - <KALMAN>
OPTIMAL CONTROL - <OPrCON>
PARTIAL FRACTION EXPANSION - <PRFEXP>
ROOTS OF A POLYNO11AL - <R3DTS>

TO USE ONE OF THE S3BPROGRAM3 ENTER THE NAME BETWEEN T9E
SYMBOLS < >.iuen



LUEN IS USED T3 DESIGN LUENBERGER OBSERVERS TO
ACHIEVE A GIVEN :LOSED-L33P TRANSFER FUNCTION WHEN OME
STATE VARIABLES kRE INACCESSIBLE.

FIRST ENTER THE PROBLEM IDENTIFICATION
(NOT TO EXCEED 23 CHARACTERS).

thesis example

ENTER THE ORDER 3F THE SYSTEM (UP TO 81 .

ENTER THE NUMBER 3F MEASUREMENTS (UP r3 8).

ENTER THE ORDER )? THE OBSERVER (UP TO 8).2

ENTER THE ELEMENTS OF THE PLANT MATRIX--A.

A (1, 1) =
0

1 K(1,2)=

A (1,3) =

A (1, 4)=0

A (2, 1) =
0

A (2, 2) =
0

A (2,3) =

A (2,4) =
0

A (3, 1) =3

A (3, 2) =
0

A (3,3) =
0

A (3,4) =1.

A (4,1) =0

A (4, 2) =-15.

A (, 3) =
-23.

A. (14,1) =
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THE A MATRIX (PLANT IATRIXI
0.0 1.OE+00 3.3 0.3
0.0 0.3 1.3aE+O0 0.0
0.0 0.3 3.3 1.OOE+00
0.0 -1.50E+01 -2.30E+01 -9.OOE+O0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?n

ENTER THE ELEMENTS OF THE DISTRIBUTION MATRIX--B.

0 B(l)=

B (2) =0

0 B(3)=

1. B()

THE B MATRIX (DI3TRIBUTI3N MATRIX)
0.0
0.0
0.0
1. OOE+O0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?
n

ENTER THE ELEMENTS OF THE OUTPUT MATRIX--C.

C(1,1)=

C (1,2)=

C (1,3)=0

C (1,4) =0

C (2, 1) =0

C (2, 2) =1.

C (2,3) =0

C (2,4 =o

THE C MATRIX (oirPTIT MATRIXI
S.COE+00 J. ).) 0.0

J.0 1.OOE+00 0.3 0.0
DO YOU WANT TO CHANGE ANY ELEMENT OF THE MATRIX?

ENTER THE DESIRED FEEDBA:K ZOEFFICIENTS.
?DBK COEFF 1)=

20.
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FDBK COEFF(2)=
13.

FDBK COEFF(3)--6.

FDBK COEPF(L4)
-3.

THE DESIRED FEEDBACK COEFFICIENTS

-6. 00E+00
-3. 00E+00

DO YOU WANT TO CHANGE ANY ELEMENT OF TiHE MATRIX?n

THE OBSERVER EIGENVALUES (F MATRIX) CAN BE SUPPLIED
EITHER IN THE FORM OF A CHARACTERISTIC POLYNOMIAL OR IN
THE ROOTS OF THAT POLYNOMIAL.

ENTER g R AP FOP POLYNORIAL COEFFITIENT FORM
OR AN COR Fr3ACtRED ROOt FORM.

ENTER THE REAL PART OF THE ROOT.
-3.5

ENTER THE MAGNITUDE OF THE IAGINARY R33T.
0

ENTER THE REAL PART OF THE ROOT.

ENTER THE AAGNITJDE OF THE IMAGINARY ROOT.
0

OBSERVER EIGENVALUES RLAJ2AT INAQ. PART-3.50 ,+0 0.6
-4.OOE4O0 0.0

THE OBSERVER ZHkRACTERISrI: POLYNOMIAL
COEFFICIENTS IN ASCENDING ?OWERS OF S

1.L40E+01 7.50E+O0 1.33E+00

THE F ATRIX (OBSERVER EE3NVALUE MATRIX)
-7. 50E+O0 1.)OE+00
-1.40E+01 0.3

THE 31 M1ATRIX 43SERVER 3ArN MATRIX)
3. 55r +0 1.? E+D 1
0.0 0.)

THE 32 MATRIX (OBSERVER 3ArN 3ATRIX)
-3. OOE+O0
-1. 50E+00

3TPUT FEEDBA:K ;OEFFICIENIS
2. OOE 01 8. 5 OE+30

COMPENSATOR FEEDBACK COEFFIZIENTS
1. COE+0 0.)

TH:S ZONCLUDES THE LUENBER3EI OBSERVER DESIGN PROGRAm.
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DO YOU WANT TO RJN THE PRJGRAM AGAIN?
n

ANALYSIS IS COMPLETE. DO YOJ WANT TO RUN LINCON AGAIN?
n

LiIIcoN is Now rERIINkrED.

The results :f STVAR, 3BSCON and LUEN are shown in

Appendix I. From these the the observer is given as

r75 Ir 1 r8. 292ir i r

-7.5 1.0 y3 (t) 85.5 29.25 X, (t) -3.0y(4 ) = " 4t u4
-1(4.0 0.0 Ly*(t) L.) 0.0 Ja(t) L-1.5I.. JK

an d

r 1S(t)"11

u() 1. 0(r(t) 2 [ 3.0 . 5]r x 1. 0 0. 0 Y )
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G. OPTIMAL CONTROL PROGRAM (oPrcoN)

Given the linear, tiz3-invariant system represented as

((t} = + zu(t) (4. G-1)

OPTCON will minimize the cost function
*1

J(N)=1/2& (N)Q(N)1/2x(k) 2_ (k)+RU2 (k 1 (4. G-2)
k~o

where

x = state vector

Q = measurement noise coviziance matrix (n x n)

N = number cf tiue interval- over whizh the sum is made

R = random input (a scala:1

4 = plant matzix (n x n)

B = distribution matrix (n x 1)

anG

u(t) = ccntrol (a scalr).

The output of the program is the feedback gain l-i::x

which, when mul-ipli=1i by the state vector, yields a szalar

ccntrol. The following recursive equations were dcrived

using dynamic pqogran-ing,startLng at the terminal tiem_ and

wcrking backwards.

P(k) = P (kiP(k-1)_k I + + R RA(k) (k) , P(3) = 3 (. 3-3)
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~j ~ + & A (k),I) 0 (4.G-L4)

a (k) = R]AP(k-1)!]/:--P(k-1)A  RJ, I'(0) = 0 (4.G-U)

For simplicity in program.iag, the follcwing terms are

defined:

terminal = 1/2xI (1IQN)

trajectcry= 1/2 (it) am

fuel = 1/2 ZRU2(k)

k.-o

1. 7EF fnall Sassiol Exa mpl?

Given the sy-tem and paLameters described below find

the discrete steady state gains f: a sample of 0.1.

r r I
r0.0 1.3

1.0 0.0 1.)

rl. 0 1.0

1.0 1.0

2=L

= 1.0

In addition, run the pcog-am for i time interval of

40.

lincon

EXECUTTON 3EGINS...
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LINCON CONSISTS OF THE FOLLOWIN3 SUBPROGRAMS:
BASIC MATRIX MANIPULATION - <B ASMAT>
RATIONAL TIME RESPONSE - <RTRESP>
STATE VARIABLE FEEDBACK - <SVAR>
CONTROLLABILITY kND OBSERVABILITY - <OBSCON>
LUENBERGER OBSERVER - <LUEN>
OPTIMAL CONTROL/KALMAN FILTERS - <RICArI>
DISCRETE TIME KALSAN FILTER - <KALMAN>
OPTIMAL CONTROL - <OPTCON>
PARTIAL FRACTION EXPANSION - <PRFEXP>
ROOTS OF A POLYNOIAL - <ROOTS>

TO USE ONE OF THE SUBPROGRAMS ENTER THE NAME BETWEEN THE
SYMBOLS < >.
optcon

OPTCON MINIMIZES THE THE FOLLOWING COST FUNCTION:

J(N) =MIN(SUM(1(N)T0Q*X(Ni UT(N-i)*R*U (N-i)))

THE OUTPUT OF rHE PROGRAM 15 THE FEEDBACK GAIN MATRIX
A TRANSEOSE WHIZH WHEN MULTIPLIED BY THE STATE VECTO
YIELDS A SCiLAR -ONTROL.
THE FOLLOWING RE-URSIVE EQU&TIONS WERE DERIVED USIN3
DYNAMIC PROGRAMMING, STARTING AT THE TERMINAL TIME AND
WORKING BACKWARDS:

(1) AT(K)=-(DELT*P(K-1) *.HI/(DELT*P(K-I)*DEL R

(2) PSI(K)=PHI+DEL*AT(K) PSI (0)=

(3) P(K)=PSIT(K)*P(K1)*PSI(K)+Q+R*A(K) *A(Kb

FIPST ENTER THE PROBLEM IDENTIFICATION(*NOT TO EXCEED 23 CHARACTERS*). thesis example

ENTER THE NUMBER OF TIME INTERVALS (NSTAGE) OVER WHICH
THE SUM IS TO BE .ADE.

NSTAGE MUSr BE ENTERED IN 13 FORMAT *

*04(I.E., RIGHT JUSTIFY rO THREE DIGITS **

ENTER THE ORDER 3F THE SYSTEM (UP TO 8).
*** ENTER IN ri FORMAT *

2

ENTER THE ELEMENTS OF THE 2 MATRIX.
*** ALL MATRIZES ARE ENTERED IN F-FORMAT ***
*** I.E., PUT A DECIMAL POINT AFTER YOUR NUMBER ***Q (1, 1) =

1.

Q (1,2)=0

0 Q (2, 1)

Q (2, 2)
2.

THE Q MATRIX
1. OOE+ 00 0.0
0.0 2.00E+0)
DO YOU WANT TO C3ANGE ANY ELEMENT OF THE AATRIX?

n

ENTER THE VALUE OF THE SCAL.kR R
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ENTER THE SAMPLE INTERVAL--Dr.
*** ENTER DT IN F-FORMAT ***.1

AT THIS POINT YOU MUST CHOOSE ONE OF THE FOLLOWING OPTIONS:
OPTION A: ENTER THE NUMBER 0 IF

(I IS FINITE, COsTr=ERNINAL+TRAJECTORY+FUEL,

(2) R IS ZERO, COST=TERMINAL+TRAJECTORY+ 0

OPTION B: ENTER THE NUMBER 1 IF
OR(It R IS FIMITE, COSTrERMINAL+ 3 + FUEL,

(2) R IS ZERO, C3ST=TERMINAL + 0 + 0

IF YOU WANT TO READ IN THE A AND B MATRICES
BUT NOT rHe PHI AND DEL MATRICES, ENTER A 0

HOWEVER IF YOU dANT rO ENTER THE PHI AND DEL MATRICES,
B6T NOT THE A AND B MATRICES, ENTER A 1.

ENTER THE ELEMENTS OF THE PLANT MATRIX--A.
A (1, 1) =0

A (1, 2) =1.

A (2, 1) =1.

0 A (2, 2)

THE A MATRIX (PLANT 3ATRIXK
0.0 1.0E +33
1.OE+O0 0.0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE IATRIX?
r

ENTER THE ELEMENTS OF THE DISTRIBUTION riATRIX--B.

0 B(1,1)

B (2, 1)1.

THE B MATRIX (DISTRIBUTION MATRIX)
0.0
1. OOE+0 0

DO YOU WANT TO CHANGE ANY ELEMENT OF THE MiATRIX?

HE l 5 t+E 0 1.301657T-01

1.00 1667E-01 1.005003E+00

THE DEL MATRIX
5.0 0 416 4:E-03
1.00 1667E-01

INII!ZATION OVER ALL STAGES
( 1). AT j)*X (3)

AT -2.462-32AT~1
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AT 2j 3.91E-01
=A :( E-

= -5.79E-01

ATM A;58E-01

U! 5= AT(J *X 3)

AT921 2E1

= AT29E-31

6  = AT (J *X4V)A } 1 -,.9bE- 1
AT2 -1.09E33

Ii = A(~*X

U4 7L) =Aj!JL*X~j)

ATM = -1.2E+03

AT = -1.38E+33

A % 1 9 )  f 9 .1 A T ( J * t Z { ] )

AT 2) i -1.50E+03

AT 2 1.611E+33

U(11) =AT(JX

AT 2 1. 72E+03

AT1 21.81E 33

U{ l1,) =AT(J *x(])
A I ! =  1.51F.+0

AT -1.96E+03

AT 2 -2.02'-+03

AT -2.07E+33

AT 1 -2.12E*33)

ul 8) AT *XB
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M(19) AT (J *1~ j it3)AT (1~ a 1.88E+0
AT (2) = 2.20E+OD

AT~2 : 2.23E+03

T 2fli :2.25E+030

=422 AT(J *i~j)

:2.0 2E+ )0

AT ~2 2 :.27E+00

AT 21 .-2 9 +3 30

AT 21 : :2.321E+33

U2)= AT j)W*XD
AAT21 :2.32E+30

tJ4,26) = T(J *X4

AT 2 23E3

AT 2-2. 35E+30
=418 ATQ *XW)

AT 2: 2.35E+30

AT 21 236:0

AT!2? -2.17bi+4I)

A 3AN)X41)

:2. 39 4.)A



A T 21 -2.39E+33

11 37) =AT 121 -2.39E+03

AT 2 -2.4OE+O

A- 2.22E+3 3
AT 2 -2.40E+33

U4 = AT (= *xtj)

AT 2 -2.40E+33

THIS CONCLUDES THE OPTIMAL 30NTROL PR:3RAM (OPTCON).
DO YOU WANT TO RUN THE PROGRAM AGAIN? a

ANALYSIS IS COMPLETE. DO Y)J WANT TO RUN LINCON AGAIN?n
LINCON IS NOW rERXINArED.

The results, shown in Appendix 3, indicate that

steady state gains a:3 achieva- at about -2.23 and -2.4.
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V. CA

A. CONCLUSIONS

Although LINCON was oritten primarily as a

teaching/learning tool, it can still be guite useful to the

practicinq engineer for desiga and analysis problems. It was

written in modular form so that it could b3 easily modified

by the addition of subroutines.

LINCON has beea extensivaly tested in an advanced

optimal estimation zoursa. rh-3 interactive aspects proved

highly successful. Hopefully all the "bugs" have been

eliminat ed.

As stated earlier, althougi the origi.al intent of this

thesis was to adapt )esjardins , version of Melsa's LINCON by

making it interazz:.ve, LIN CD began t. grow as other

routines were added ind/or sxtqeisively modified.

OPTCON, the optimal conrz! program using recursive

equations d.-rived fron lynamic Drogramming, is a new member

to the LINCON family. Dc-sja:.ir-.s' KALMA., the discrsr.4 -ie

Kalman filter prolria, underwv.nt consid-:able programming

changes before achieving i ts prsent form.
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B. RECOM ZNDATIONS

(1) The source prcgram, LI.VCON FORTRAN Al, must now be

passed from user to user and than compiled before it can be

used. As can be seea in the taciinal session examples, the

program was invoked by typing "Ilincon". Actually, this is

an executive prograi, LINCON EKEC Al, zomprising of the

following statements:

FILEDEF 09 PRINrER (RECFM FA LRECL 133 BLOCK 133

LOAD LINCON (SrART

The first statement fefin.s 39 as the printer and permits it

to print out 133 characters pe.= line. T he second satieent

invokes the compiled version of LINCON. rt is recommended

that LINCON be placed on a util: ty disk so that users may

link to it instead of the curze t procedure.

(2) At tim-s it can be exceedingly difficult to

interpret the tabular outpuT of sime cf the prog:ams. It is

recommended that a graphics paztage be developed for R-ESP,

RICATI, KALMAN and OPrCON. rhe pazkage should be izerac--ve

wi-h the output being first lisplayed on the termfnal ==_een

ard then allowing tna user to choose the type of outouz,

., VRSATEC, TEK7TRNIX cr riat-plct.
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(3) In general, the programs are limited to eighth-order

problems. If the n..d shoull arise to solve higher order

systems, this liai:ation may oe removed by extending the

appropriate dimension statements. The user must remember to

alter the format statement pertaining to the output, either

decreasing the significant figures or adding a "wrap-around"

feature to overzome the printer lizitations of 133

characters per line.

(4) As it is written, LUEN can only solve for a

reduced-order observer. It is recommended that the program

be modified so that the user his the optio- of selecting a

reduced-order observer or an idetity observer.

(5) The ficticious and ---a! c ma-r-:es of STVAR are

required to have the _= iensions 1 x r.. It is recommenied

that the program be iodified to accept a dimension siz= of m

x nl.
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BASIC MATRIX PR)GRAM
PROBLEM IDENTIPZCATION: THESIS EXAMPLE

THE A MATRIX
1.0 000 00E+00 0.0 3.0
0.0 -2. 00030)E+00 1.330000E+00
0.0 - :oooooJE-01 1. OOOOOE.00

THE ETER ,INANT OF rHE MArIX1 COO 00E+00

THE IXVEPSE OF rHE MATRIX
1.00000 E00 0.0 0.3
0.0 -6.666565E-01 6.556665E-01
0.0 -3.333333E-01 1.333333E+00

THE MATRIX COEFFICIENTS OF THE NUMERATOR OF THE
PHI(S) MATRIX
THE MATRIX COEFFICIENT 3F S**2

1. o 0o000E+00 0.0 0.3
0.0 1.000000E+00 0.3
0.0 0.0 1.300000E+00

THE MATRIX COEFFICIENT 3F S**
1.000000E+00 0.0 0.)
0.0 -2.300003E+00 1.O000000EO0
0.0 -5.00030)E-01 1.330000E+0O

THE MATRIX COEFFICIENT 3F S**0
-1. 5 000 OE+30 0.0 0.3
0.0 1.00030)E+00 -1.30000003+00
0.0 5.O00O03E-01 -2.330000E+O0

****** ., **, **,,.:, ***,** ********~*****************************
THE CHARACTERISTIC POLYN3tIAL-IN ASCENDING POWERS OF S

1.500000E+00 -2.50000)E+O 3.3 1.000000E+00***** *,,** ***,*,****. **** **** :,. . ,** ********************** .**
THE EIGENVALJES OF rHe A IATRIX

REAL PART IMAGINARY PART
8. 228755E-01 0. 0

-1. 822876E+00 0. 3
1. 3000 OOE+00 3. )

****** * **** ******I * ******************* ***
THE ELEMENTS OF THE STATE tRANSITION MATRX

THE MATRIX COEFFIZENr OF EXP( 8.228755E-01)-T
0.0 0.0 0.3
0.0 -6.694317E-02 3.779633E-O1
0.0 -1.389811E-o1 1.356 45E+00

THE MATRIX CO3 F FI:: N 4" OF EXP( -1.822875 +00) T
0.0 0. 3.3
0.0 1.066944 E)00 -3. 77964 1:-:01
0.3 1.889823E-01 -6.694669E-02

THE MATRIX COEFFIZENr OF EXP( 1.000000£+00)

1. O00000E+30 3.0 0.)
0.0 -2.264977E-36 2.951023E-06
3.0 -5.364(41BE-07 1.a728843-06
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PARTIkL FRACTI3 EXPANSI3
PROBLEM XDENTIFICATION: THESIS EXAMPLE

THE INPUT FUNCTION 3AIN
7.0 COO OOE+00

NUMERATOR COEFFICIENTS - IN ASCENDIN3 POWERS OF
2.OOOOE+0O 2.30O0ZO0 1.O000E+00 1.O000E Iw

NUMERATOR RODTS ARE
REAL PART IMAG. PhRT
0.0 -1.41L,213E+00
0.0 1.414213E+00

-1. 0 00 0.0

THE INPUT FUNCTION 3AIN
7.0 000 OOE 00

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S
2.OOOE+0O 1.000E+00 0.0 3.OOOE00 1.000E+00

DENOMINATOR R03TS ARE
REAL PART IMAG. PAR MULTIPLICITY
-3.018859E+00 0.0 1
-9.1 276 04E-3 1 0.0 1

4. 6 580 98E-0 1 -8.3084279-01 1
4. 6 58098E-3 1 8. 308(427E-01 1

RESIDUE MATRIX - REAL PARr
5.8 10872E+00
3.1 70837E-01
4.36023 1E-O1
4. 36023 1E-0 1

-MATRI IMAG. ?ANT-2. 00349E-0,
0.0
2. 0614 06E+O0

-2.0 614 06E 00
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ROOTS OF A POLUNOMUIL
PROBLEM IDENTIPICATION: THESIS EXAMPLE

POLYNOIkIL C3EFFICIENTS - IN hSCEVDIN3 POWERS OF S
8.0000E-01 5.1000E+00 3.O000E+0O 1.OOOOE+O0

THE ROOTS ARE REAL PART IMAGINARY PART-l.t13221E 00 1.6 12418E 00
-1.413221E 00 -1.6162,8E+33
-1. 735564E-01 0.0
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RATIONAL TIME RESPONSE
PROBLEM IDENTIFICATION: THESIS EXAMPLE

THE A MATRIX 6PLANT MATRIX)
1.0 COO OOE+O 0.03
80 -2.0003039+00 1.OOOOOOE+00
0. -5.00030)E-01 1. 3300009+00

THE B MATRIX (:NTROL VErOR)
0.0
0. 0
1. 0000 OOE+0

4. 0000 OOE-0 1
1. 0 COO OOE+00

THE FEEDBACK CDEFFIZIENr VECTOR
1. 0 000 OOE+00
1.0 000 OOE+O0
0.0

THE. C@ROLLER 3AIN3 2 OOE+O0

INITIAL CONDITIONS VECTOR-X(O)
0.0
0.0
0.0

TH . gFUNCUrON ;AIN

NUMERATOR POLYNOMIAL OF R(S)-ASCENDINg- POWERS OF S
1.OOOOOE+0 1.0030)B00

NUERATOR RODTS ARE
REAL PART IMAG. PARr

-1.0 000 OOE+00 0.0

DEOIAO 3DrOMA F I(S) -ASCEND N POWERS OF 5DO2. 000000E+ 0 0.0 1.00 0E+0oO0R O

DEnOMINATOR RO3rS ARE
REAL PART InAG. PkRr
1. 4 142 1 3E+30 0.0

- 1. 4 142 13E 30 0.0

THE TIME RESPON3E OF THE 3TATE X(T)
VECTOR COEFFICIENT OF EXP(-5.OOE-01) r*cos (1.2E+33)T

0.0 -3.695463E-01 -9.7176973-01

VECTOR COEFFICIENT Or D5 00E-O1Hj*SI3 1.20E+00) T
0.0 -3.46674 E-01 -7. 1 .2007E-02

THE VECTOR COEFFICIENT )F EXP( 1.300000E+O0)T
0.0 0.0 2.382209E-06

THE V:COR COEFFICIENT )F EX? 1.41213E+O0)T
50 2.64037) -0 Io 9.117225E-01

THE VECTOR COEFFICIENT OF EXP( -1.41213E+00)T
0.0 1.325083E-0I 6.304864E-02
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~FI Nr OF ap E?38T34T*.O1O4E
-H1. 1 19588E*0 5 2O1241O0

THE COE??ICUENr OF E1P(-5.)OOOE-O1)T*SIU(1.20WIEi-OO)T
-2. 1 39OOE-31

TH.~3JIN OP EXP( 1.0OOOOOE+0O)T

THf.O~j~jI8r OF EXP( 1.I41L213E4OQ)T?

T~fgO811CI~rOF EXP( -1.41L4213E400)T
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OBSERUBILITY, ONTROLLABILITY

PROBLEM IDENrIFICATION: THESIS EXAMPLE

THE A MALTRIX (PL AN sotiTRIKI
0.0 1. 00 00+0 0.0

-1.O00000E+OO -5. OOOOOE-01 1.O00000E 00
0.0 3. 0 1. OOOOOOE+00

THIE B MATRIX

1.0003 oE+03
0.0 3.0

0.3HE C MATRIX 1.000000E+03 0.0
1 . 00000 +00 I. 0000 OOE+03 0.0

-2. 00000 OE+0O 1.O00000E+03 0.0

OBSERVABILITI 14DEX = 2
THE SYSTEM (&81 IS UNCOrtROLLaBLE
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OPTIMAL CONTROL/CONTrI3US KALMAN FILTER PROGRAM
PROBLEM IDENTIFICATION: THESIS EXAMPLE

THE & MATRIX (PLANT MATRIKI
-1.000000E+O0 3.0
0.0 -2.000300E+03

v ~0  AIX (3 TRIBUTION MATRIX)
0.0 1.000) OOE+03

THE C MATRIX (43ASUREMENT MATRIX)
1. 0000 00E.00 3.0
0.0 2.0000OOE+33

THE R MATRIX (-3NTROL WEI3HTING MATRIX)1.O00000E+O0 3.00.0 2. 0003 OE0 3

THEQ MAll~TRIX (STATE W gIGHrING MATRIX)1.000E0 0 1.000300EI H1, 00 1O0i E+O)
1.OOOOOGE00 1. 0003 OOE+02

* $ CONTROL OPT13N ***

THE P MATRIX (TERMINAL BOUNDARY VALUE MATRIX)
0.0 2.0
0.0 3.0

TRANSIENT SOLu1oi
TIME = 1.OOOE+31
GAINS

0.0 0.0
0.0 0.0

TIME = 9.OOOE+33
GAINS

3.745150E-01 2. 808374E-01
1.o404037E-01 1. 112729E-01

TIME = 8.OOOE+33
GAINS

3.982797E-01 2.849711E-31
1.L424856E-01 1. 117260E-01

TIME 7 .OOOE+33
GAINS

3.997058E-01 2. 847993E-011. 423996E-01 1. 117371E-01

TIM: = 6.000E+33GAZIS
3. 99795 9E- 01 2. 847759E-01
1. 423879E-01 1. 117399E-01

TIME = 5.OOOE+33
GAINS

3. 997999E-0 1 2. 847756f.-O1
1. 423877E-01 1. 117399E-01

TIME a 4.OOOE+33
GAINS

3. 99799 9E-0 1 2. 847756E-01
1. 423877E-01 1. 117399E-91
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TIflE - 3.000+O00
GAINS

3. 997999E-01 2. 847756E-01
1. 4238772-01 1. 117399E-01

TIME = 2.O00OE 30
GAINS

3. 993999E-0 2. 847756E-01
1 8 18-0 1 . 117399E-01

TIME = 1.000E+33
GAINS

3. 997999E-0 1 2. 847756E-01
1. 42387 7E-01 1. 117399E-01

TIME = 2.861E-)S
GAINS

3. 997999E-01 2. 847756E-01
1. 423877E-01 I. 117399E-01

'** FILTER OPrI3N *'*

THE P MATRIX (rlIrAL 83U..qDA1RY VALUE MATRIX)
0.0 3.0
0.0 3.0

TRANSIENT SOLUTION
TIME = 0.0GAIN S

0.0 0.0
0.0 0.0

TIME = 5.000E-31
GAINS

2.393162E-01 2.004539E-01
8. 018157E-01 S. 849594E-31

TIME = 1.000E+33
GAINS

2. 708317E-01 2. 1279 I1E-01
8. 51176 7E-0 1 7. 053521E-01

TIME = 1.500E+)3
GAINS

2.768 88E-01 2. 133181E-01
8. 53272 4E-0 1 7. 055743E-)1

TIME = 2.000E+33
GAIS

2.784715E-0 1 2. 132589E-01
8.530354E-01 7. 055843E-31

TIME = 2.500E+3
GAINS

2.789688E-01 2. 132211E-01
8.528843E-01 7.055938Z-31

TIME = 3.000E+33
GAINS

2.791271E-01 2. 1320'74E-01
8. 52829 7E-0 1 7. 055372E-31

TI,E = 3.500E+33
GAINS

2.79178 IE-01 2. 132327E-01
3. 528109E-01 7.055984E-31
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TIME 4 OO00E+3

2.99N BE-O0l 2. 13232OB-01
8. 52807 SE- 01 7. 055986E-01

TIME = 4.500E 3D
G&INS

2.79 198 3E-O1 2. 132018E-01
8. 528070E-01 7.055986E-01

TIME a 5.000E+

2.79 1983E-01 2. 1323 18E-01
8. 528070E-01 7. 055986E-01

1)

1)3



DISCRETE TIME KALMAN FILTER PROGRAM
PROBLEM IDENTIFICATION: THESIS EXAMPLE

THE PHI MATRIX (TRANSIT- MATRIX)
1. 0000 0 aE 00 3 000300E-0i
0.0 1.000000E+03

THS GAMMA MATRIK (DISTRIBUTION MATRIX)
1.2500 00E-01
5.0000OOE-01

THE W MATRIX {dEAN-SQUARE MAGNITUDE 3F THE
PERTURBATION A-ELER ATI3N MATRIX)

4. O00000E+00

THE H MATRIX (OBSERVATI3N MATRIX)
1. 00000CE+00 3.0

THE R MATRIX (ISASUREMENT NOISE COVARIANCE MATRIX)
5.00000 0E+00

THE P MATRIX (INITIAL CONDITION MATRIX)
1.00000 E 03 3.0
0.0 1.000300E+03** ,** ** * ** * * *** *** * **** * =************* ***

K = 0
GAINS

9.95024&8E-01 3.0

K = 1
GAINS

9.807723E-01 1. 923759E+03

K = 2
GAINS

8. 290299E-01 9. 980751E-01

K = 3
GAINS

7.028207E-01 5. 237227E-01

K= 4
GAINS

6. 134719E-0 1 4. 522047E-01

K = 5
GAINS

5.543699E-01 3. 7163 16E-01

K = 6
GAINS

5.184991E-01 3. 362513E-01

K = 7
GAINS

4.9922 8E-01 3.232393E-01

K= 8
GAINS

4. 90446 8E- 01 3. 201340E-31

K = 9
GAINS

. 87254 9E-0 1 3. 202326E-01



K = 10
GAINS

4. 8644 00E-01 3. 2079 18E-01

K 11GAIN S
.M.863'475E-01 3.210392E-01

K = 12
GAINS

4. 863456E- 01 3. 2099 99E-01

K= 13
GAIN S

4.86294 (4-01 3. 208563E-01

K = 14
GAINS

4.86216eE-01 3.207275E-01

K= 15
GAINS

4. 86 148 0E-01 3. 206 494E-01

K = 16
GAINS

L4.861035E-01 3.206143E-D1

K = 17
GAINS

4.860806E-01 3. 206035E-01

K = 18
GAINS

4.860712E-01 3.206024E-01

K 19
GAINS

(4.860685E-01 3. 20603LiE-01

K = 20
GAINS

4. 860680E-01 3.206341E-)1
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STATE VARIABLE FEEDBACK PR3GRAM
PROBLEM IDENTIFICATION: THESIS EXAMPLE

THE A MATRIX (PLkNT MATRII
.00o OOE+0 1. 000303E+00 0.3

0.0 0.0 1.000000E+00
0.0 -3.000003E+00 0.3

THE. MATRIX (C3NTROL MATRIX)

0.0
1. 00000E+00

OPEN-LOOP CALCULATIONS
DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

3.OOOOE+O0 3.0000E+03 1.OOOOE+00 1.0003E 00

THE ROOTS ARE REAL PART _JjN1RY 3RT
0.3 0 0
0.3 1.732051E+00
-1.300000E+00 0.0

THE C MATRIX (FICTIZIOUS 3UTPUT VECTOR)
0.0
0. 0
1.0 000 OOE+00

NUMERATOR COEFFICIENTS - IN ASCENDIN3 POWERS OF S
0.0 1.000303E+00 1.OOOOOOE+00

THE ROOTS ARE REAL PART IMAGINARY PA.-
-1.300000E+00 0.0
3.3 0.0

THE C MATRIX (33TPUr VEZ)3R)
1. 0000OOE+O
1. 0000 OOE+00
0.0

,'UMEO O FICIENT8 CENDIN ; POWERS OF S2. 0000E+O 1.0 E0

THE ROOTS ARE REAL PART IMAGINARY PART
-2.330000E+OC 0.0

************************** ** **********

CLOSED-LOOP CALCULATIONS
KEY =P ***
THE NUMERATOR DF H-EQUIVALENT -
IN ASCENDING POWERS OF S

5.0 0000E-01 1.500003E+00 1.500000E+00

THE ROOTS AEE REAL PAR3.6 NAG. PART.
-5.000O E-01 -2.886756E-01
-5.330000E-01 2.886756E-01

TH? FERDSACKoCO)EFPIIENTrS
0.3OE-1 1. 530000E+00

THE GAIN 2.000300E+03

THE .LOSED-LOOP CHARACTEREST:C POLY.OMIAL -
.N ASCINDING P'iERS OF S
4.OOOOE+00 6.0000E+33 4.0000E 00 1.0001E+00
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THE ROOTS ARE REAL PART IMAG. P&RT
-2.300000E O0 0.0
-1.300000E+00 -1.0OOOO0E+00
-1.303000E+00 1.OOOOOOE+00

MAXIUN NORMALIZED ERROR = 0.0
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STATE VARIABLE FEEDBACK P33GRAN
PROBLEM IDENTIFICATION: THESIS EXAMPLE

THE.A MKTRIX oP L ANT NATRI111
0.0 1.00000 OE+00 3.0 0.0
0.0 0.3 1.000000E+00 00.0 0.0 3.0 1:800000E+O0
0.0 -1.503300E+01 -2.300000E 01 -9.OOOOOOE+0O

THE B MATRIX (:ONTROL MATRIX)
0.0
0.0
0.0
1.0 000 OOE+00

OPEN-LOOP CALCULATI3NS
DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

0.0 1.500E+31 2.300E#.O1 9.000E+30 1.000E+30

THE ROOS ARE REAL PART INAGINARY PART
-3.)03000E+00 0.0
-4.399999E+00 0.0
-9.999999E-01 0.0
0.) 0.0

THE C MATFEIX (OUTPuT VET:)R)
2.0 000 OOE+I
1.0 003 OOE+0 1
0.0
0.0

NUMER M 0R CO5FFrCIENTS - N SCENDING POWERS OF S2.0 000E+3 1 1. 00, JE 01

THE ROOTS APE REXL PART IMAGINARY PXRT
-2.030000E+00 0.0****** **• ******* ,******* ,, * ** •***** *

CLOSED-LOOP CALZULATIONS
KEY = P
THE NUMERATOR OF H-EQUIVALENT-IN ASCENDING POWERS OF S

2.OOOE+01 1.3007+01 -6.000E+33 -3.0002+00

THE ROOTS ARE HEAL MA_ PART-1 39b2 3+O .0
3.206289 E 00 0.0

THE FEEDBACK CJEFFIZ:.:NTS
2.O000 1 1.300E+01 -6.0OOE+30 -3.OOOE+00

THE GAIN = 1.000300E+3)

THE CLOSED-LOOP CHARACTERISTIC POLYNOMIAL
IN ASZENDING P2WERS OF S

2.000E+O1 2.800E+01 1. 7O)E+01 6.300E+00 1.000E+00

THE ROOTS ARE REAL PART IMAG. PART
-1.300000E+00 -2.00000E+00
-1. 30000E+00 2.OO0000E+O3
-2.)30484E+00 0.0
-1.399516E+00 0.0

MAXIMUM NORMALrZED ERROR = 0.0

OBSERVABILITY, :ONTROLLAB3LrTY

PROBLEM IDENrIFICATION: THESIS EXAMPLE
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3EA MATJ!p 0 6 6 T,.TRIIS 0  0
0.0 0.3 I.OOOOOE 00 0.0
0.0 0.0 3.0 1.OOOOOOE+00
0.0 -1.503300E+01 -2.300000E+01 -9.000000E+00

0. HE B MATRIX
0.0
0.0
1. 000000E+00

1. 3o S Yl 0.0 0.0 0.0
0.0 1.000000E+03 0.0 0.0

OBSERVABILITY INDEX = 3
THE SYSTEM (A BI IS CONTROLLABLE

LUENBER3ER OBSERVER DESIGN PROGRAM
PROBLEM IDENTIFICATION: THESIS EXAMPLE

THE A M&TRIX fPL ANT MATRIX).0.0 1. 30OOE+O0 .0 0.0
0.0 0.3 1.OOOOOOE+00 0.0
0.0 0.0 3.0 1.O00000.+00
0.0 -1.503 OOE401 -2. 300000E 01 -9.000000E+00

THE B MATRIX (DISTRIBUTION MATRIX)
0.0
0.0
0.0
1.0 COO OOE+00

1.OCOOOOE+O 0.00.00
TC MATRIXQ 3TPUT MAIK];)0.00

0.0 1.000300E+00 0.3 0.0

THE DESIRED FEEDBACK COEFFICIENTS
2. 0000 OOE+2 1
1.300000E+01

-6. 0 COO OOE+00
-3. 0 COO 0E 00

OBSERVER EIGENVALUES REAL PARE I!!AG. PART
E+00 0.0

-4.000000E+00 0.0

OBSERVER CHARAOTERISTIC P)LYNOMIAL
COEFl-CIENTS IN ASCENDING POWERS OF S

1.40OOOOE+01 7.50030)E+00 1.330000E+00

THE F MtATRIX (BSERVER EI3ENVALDE MArRIX)
7. 5 C000E+OO 1.000303E+00

-1. 4 000 00E+31 0.0

THE gliMA3RIX (OBSERVER -ArN INATRIX)
B499 97E+31 2. 924 94E+01

0.0 0.0

THE G2 MATRIX (OBSERVER GkIN MATRIX)
-2. 9999 97E+00

-1.5000 01E+0
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OUTPUT FEEDBACK COEFFICIENTS
2. OOOOOOE.O1 8.5OOOO4~E+00

COf PFRSATOR FEEDBACK COEFFICIENTS
1. OOOOOOE+00 0.0
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OPTIMAL CONTROL PRO:RAM

PROBLEM IDENTIFICATION: THESIS EXAMPLE

THE NUMBER OF TIME INTERVALS = 40

THE ORDER OF THE SYSTEM z 2

THE. 8 CARIX1 OoE+oo 0 o
0.0 2000003E+00

THE SCALAR R = 1.

THE SAMPLE INTERVAL (DTI = 0.1000

TH5.8 MATRIX (PLA 9386 0 0
1.0 000OE+00 0.0

THE B MATRIX (DISTRIBUTION RATRIX)
0.0
1.0 000 OOE+00

TE PHIMTITH 0 503E+00 1.001667E-01

1.0 01667E-01 1. 005003E+00

13

1.0 01667E-01

MINIMIZATION OVER ALL STAGES

=
U ATj*KiAT -j 1.98E-o1

A2 3.91E-3 1

U( ) ATJ*=JATU -5.79E-0 1

A( = -2.5 E- 1
AT(2j -7.58E-01

U $ 5==

AT 2 -9.29E-31

AT(2} = -1.09E+)0

01 8) = AT(J)*X(J)

A T 2 -1.38E*30
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U I( 1 

AT 2 : AsE 0

AT2 1 - -1.61E+ 01T( ) -T 1, *

:1.723+00

U ( 12) =s AT( 3b*X0J.
AT'(I| -1,3E+ 0
AT 2 -1.814+00
U (13) =AT(J *X{J)
ATfll) :1:4 1E 00
AT 2 1 -189E+00

A Il - -1.+E "

AT 2) = -1.96E+30 S%
U (15) = A( Xi

AT1) -1.75E 0

AT 2  = -2.02E+30

S-216E 0

=T2  -2.20E.00

ATjlr : 1.93E+
AT 2 -2.27E+30

U (1) =AT(J *K(
A}il = -. 9E H

AT 2) -2.125E 3 0

AT2) = -2.27E+30

U419TA%*?j

204) !T *XJT 2 =1 -2:2913 ?E)0

Ut 25):= AT

AT2

: 2.09UN1ATf -2.32E 3 0
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-7

AT(2| -2.3lE+3

30(12) 32 5 E_*X,.0

U4 11) L x

AT2I) -2.35EtS
IT121= -2.35E+30IN
ITM2? -2.36E+30

ATl R -2.1 /E+ 0

T2 -2.37E+30
U4,31) A TJ*II_
AT 1 -2. 18h E+ O

AT(2= -2.37E+00

U,32) AT(J *KJ)
A | -2.9E3 0AT 2) -2.38E+3 0

t4,33) AT(J *]XJ)A'! I1 -2.20OE+ 0

AT 2) 2.38E+30

tJ} 39)1 = AT (JI*X(J)

U4(13) -2.20 j 0
AT(2B -2.39E+00

AT121= -2.39E 30

AT ) = -2.14 +J)
lTl2) = -2.29E+30

AT = -2.39E+30

U(,38) k T(JI*(J
ATI1 2 -2.29E+10
AT,3) -2.Q0E*X

ATl 1=-2.22":N+00O
AT(2) = 2.40E+30

= -2.40E+30
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